首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Five types of Bacillus subtilis spores (UVR, UVS, UVP, RCE, and RCF) differing in repair and/or recombinational capabilities were exposed to monochromatic radiations at 13 wavelengths from 50 to 300 nm in vacuum. An improved biological irradiation system connected to a synchrotron radiation source was used to produce monochromatic UV radiation in this extended wavelength range with sufficient fluence to inactivate bacterial spores. From the survival curves obtained, the action spectra for the inactivation of the spores were depicted. Recombination-deficient RCE (recE) and RCF (recF) spores were more sensitive than the wild-type UVR spores in the entire range of wavelengths. This was considered to mean that DNA was the major target for the inactivation of the spores. Vacuum-UV radiations of 125-175 nm were effective in killing the spores, and distinct peaks of the sensitivity were seen with all types of the spores. Insensitivities at 190 and 100 nm were common to all five types of spores, indicating that these wavelengths were particularly impenetrant and absorbed by the outer layer materials. The vacuum-UV peaks centering at 150 nm were prominent in the spores defective in recombinational repair, while the far-UV peaks at around 235 and 270 nm were prominent in the UVS (uvrA ssp) and UVP (uvrA ssp polA) spores deficient in removal mechanisms of spore photoproducts. Thus, the profiles of the action spectra were explained by three factors; the penetration depth of each radiation in a spore, the efficiency of producing DNA damage that could cause inactivation, and the repair capacity of each type of spore.  相似文献   

2.
The role of solar UV radiation in the ecology of alpine lakes.   总被引:10,自引:0,他引:10  
Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.  相似文献   

3.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

4.
The mechanisms and dose-response of UV action on the early development of Macrocystis pyrifera (L.) C. Agardh gametophytes were investigated. Post-release, zoospores undergo germination, germ tube elongation, DNA synthesis, nuclear division and translocation, which were followed for 41 h under laboratory conditions. The spores were exposed to UV radiation before germination (3 h post-release) or before nuclear division (20 h post-release). Biologically effective UV-B doses (BEDDNA300 nm) higher than those used in the experiments are needed for a 50% inhibition in germination (BED50 > 1600 J m-2). Nuclear division/translocation was more sensitive to UV radiation. When the spores were cultured in the dark, UV exposure at both 3 and 20 h post-release resulted in a dose-responsive inhibition of nuclear division/translocation (BED50 64 and 86 J m-2). Culturing in the light indicated recovery in the spores that were irradiated at 3 h post-release (BED50 356 J m-2), whereas no light-dependent recovery occurred within 41 h of culture when irradiated at 20 h post-release (BED50 80 J m-2). The results present a possible mechanism of UV inhibition in early life stages of the giant kelp, suggesting that environmentally relevant UV-B levels can perturb or delay the development and recruitment of the gametophytes by inhibiting nuclear events.  相似文献   

5.
The effect of ultraviolet radiation (UVR) on inhibition of photosynthesis was studied in two species of marine picoplankton with different carbon concentration mechanisms: Nannochloropsis gaditana Lubian possesses a bicarbonate uptake system and Nannochloris atomus Butcher a CO2 active transport system. Biological weighting functions (BWFs) for inhibition of photosynthesis by UVR and photosynthesis vs irradiance (PI) curves for photosynthetically active radiation (PAR) were estimated for both species grown with an enriched CO2 supply (high dissolved inorganic carbon [DIC]: 1% CO2 in air) and in atmospheric CO2 levels (low DIC: 0.03% CO2). The response to UVR and PAR exposures was different in each species depending on the DIC treatment. Under PAR exposure, rates of maximum photosynthesis were similar between treatments in N. gaditana. However, the cultures growing in high DIC had lower sensitivity to UVR than the low DIC cultures. In contrast, N. atomus had higher rates of photosynthesis under PAR exposure with high DIC, but the BWFs were not significantly different between treatments. The results suggest that one or more processes in N. gaditana associated with HCO3- transport are target(s) for UV photodamage because there was relatively less UV inhibition of the high DIC-grown cultures in which inorganic carbon fixation is supplied by passive CO2 diffusion. Time courses of photochemical efficiency in PAR, during UV exposure and during subsequent recovery in PAR, were determined using a pulse amplitude modulated fluorometer. The results were consistent with the BWFs. In all time courses, a steady state was obtained after an initial decrease, consistent with a dynamic balance between damage and repair as found for other phytoplankton. However, the relationship of response to exposure showed a steep decline in activity that is consistent with a constant rate of repair. A novel feature of a model developed from a constant repair rate is an explicit threshold for photosynthetic response to UV.  相似文献   

6.
An important step in predicting the effects of future increases in UV radiation (UVR) is to evaluate the mechanisms that organisms use to prevent and repair DNA damage and determine how those mechanisms influence UVR sensitivity. Damage is prevented to varying degrees through photoprotection and repaired via two main pathways: nucleotide excision repair and photoenzymatic repair. At present, little is known about the generality or similarity of these defenses among temperate freshwater fishes. We used laboratory experiments to compare UVR defense mechanisms among five freshwater fish species representing four families and three orders. Purified DNA, freeze-killed larvae and live larvae were exposed to UVB radiation for 12 h in the presence or absence of photorepair radiation. After exposure, we quantified frequencies of cyclobutane pyrimidine dimers in each exposure treatment. All five species used photoprotection and proportional decreases in dimer frequency were similar for all species. Evidence of excision repair was also found for all species but proportional decreases in photoproduct frequencies varied among species. Finally, evidence of photoenzymatic repair was found for only two of the five species.  相似文献   

7.
Phlorotannins have often been considered to act as UV-protective compounds in zoospores of brown algae. However, only the absorption characteristics of zoospores under UV exposure have been determined and no data are available on the actual content of phlorotannins or on temperature–UV interactions. Therefore, we determined the absorbance spectra and the phlorotannin contents in zoospore suspensions of three Arctic species ( Saccharina latissima , Laminaria digitata , Alaria esculenta ), and in the media surrounding zoospores after exposure to different radiation (400–700, 320–700, 295–700 nm) and temperature (2–18°C) conditions for 8 h. Absorption typical of phlorotannins with a maximum at 276 nm was monitored in zoospore suspensions as well as in the media surrounding zoospores, but the results depended strongly on radiation treatments and on zoospore densities. Surprisingly, the content of UV-absorbing phlorotannins subsequent to different exposures did not change in any of the three species. The observed exceptional absorption properties could, therefore, not be related to phlorotannin contents. These findings are discussed in light of a strong phlorotannin investment from sporophytes during spore release and a minor UV-protective role of phlorotannins for zoospores of Arctic kelp species.  相似文献   

8.
To quantify ocular exposure to solar ultraviolet radiation (UVR) and to assess the risk of eye damage in different geographical directions due to UVR exposure, we used a spectrometer and a manikin to measure horizontal ambient and ocular exposure UVR in different geographical directions at four different locations at the Northern Hemisphere. Describing the relationship of exposure to risk of eye damage requires the availability of UV hazard weighting function. So, we used the UV hazard weighting function (ICNIRP) proposed by International Commission on Non‐Ionizing Radiation Protection to determine the biologically effective UV irradiance (UVBEeye) and then cumulative effective radiant exposure (Heye) to shown the risk of eye. We found that in different geographical directions, distributions of ocular exposure to UVR were markedly different from those of horizontal ambient UVR. When the midday maximum SEA > 50°, eye received more UVR from the east and west directions during the morning and evening hours, respectively. However, when the midday maximum SEA < 50°, eye received more UVR from the south direction at noon. The results of this research indicate that the higher risk of eye caused by UVR varies according to the midday maximum SEA corresponding to different geographical direction.  相似文献   

9.
The degree of ultraviolet enhanced reactivation (UVR) exhibited by mammalian cells when infected with Herpes simplex virus inactivated by different wavelengths of far ultraviolet (UV) radiation was measured. A wavelength dependence for this effect is presented over the wavelength region 238–297 nm. Within the limits of the deviations obtained, the degree of UVR exhibited is similar at each wavelength. This suggests that virus irradiated with different wavelengths of UV radiation received the same type of damage or that cells repaired the different types of viral damage with the same efficiency.  相似文献   

10.
Ultraviolet radiation (UVR) is hazardous to patients with photosensitive skin disorders, such as lupus erythematosus, xeroderma pigmentosum and skin cancer. As such, these patients are advised to minimize their exposure to UVR. Classically, this is accomplished through careful avoidance of sun exposure and artificial tanning booths. Indoor light bulbs, however, are generally not considered to pose significant UVR hazard. We sought to test this notion by measuring the UV emissions of 19 different compact fluorescent light bulbs. The ability to induce skin damage was assessed with the CIE erythema action spectrum, ANSI S(λ) generalized UV hazard spectrum and the CIE photocarcinogenesis action spectrum. The results indicate that there is a great deal of variation amongst different bulbs, even within the same class. Although the irradiance of any given bulb is low, the possible daily exposure time is rather lengthy. This results in potential daily UVR doses ranging from 0.1 to 625 mJ cm−2, including a daily UVB (290–320 nm) dose of 0.01 to 15 mJ cm−2. Because patients are exposed continually over long time frames, this could lead to significant cumulative damage. It would therefore be prudent for patients to use bulbs with the lowest UV irradiance.  相似文献   

11.
A photoprotective role of ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) in eggs of the green sea urchin Strongylocentrotus droebachiensis was demonstrated by comparing UV-induced delays in the first division of embryos having either high or low concentrations of MAAs. Embryos from adult urchins fed Laminaria saccharina (no MAAs) had low concentrations of MAAs and experienced a significantly longer UV-induced delay in cleavage (25.1%) than MAA-rich embryos from adults fed Mastocarpus stellatus (12.8% delay) or a combination diet of both macroalgae (12.3% delay). Collectively, these embryos displayed a significant inverse logarithmic relationship between MAA concentration and percentage cleavage delay, so that the greater the MAA concentration in the eggs, the less they were affected by UV radiation. This is the first study to examine such MAA manipulation of cellular MAA concentrations with no prior UV exposure of the experimental subjects. Concentrations of MAAs were also measured in unfertilized eggs, blastulae, gastrulae and early pluteus larvae, providing the first documentation of changes in MAAs during embryological and larval development. The concentration of shinorine (the principal MAA in the eggs) did not change during short-term UV exposure in vivo or long-term exposure in vitro; such photostability is a useful attribute of a natural sunscreen.  相似文献   

12.
This article explores the potential role of UV radiation (UVR) as an influence on zooplankton communities. In the first section we provide a general overview of UVR effects on freshwater zooplankton, with an emphasis on Argentine and Chilean environments. In the second section we present the results of a survey involving 53 temperate lakes across a gradient of UVR exposure to determine patterns of species richness and specific diversity. These community characteristics decreased at high potential UVR exposure (i.e. high mean water column irradiance or low lake optical density). A threshold value of mean water column irradiance of approximately 10% of the surface level seems to limit both richness and diversity to minimum values. On the basis of the collected evidence it is not possible to definitely conclude that UVR rather than another covarying factor is responsible for the decrease in specific diversity observed at the lowest end of lake optical depth. However, lakes with values above the previous threshold are likely to exhibit highly depauperate zooplankton communities regardless of the mechanism. As a cautionary note we suggest that changes in the optical characteristics (i.e. changes due to atmospheric conditions, precipitation patterns or vertical displacement of the tree line) may result in sudden shifts in zooplankton community structure.  相似文献   

13.
A single or a limited number of UVR exposures is recognized to suppress cell-mediated immunity in human subjects. The complex pathway leading from the absorption of photons by chromophores in the skin to the generation of T regulatory cells has been, at least partially, elucidated. However, the effect of repeated UV exposures on immune responses and associated mediators is not well studied, particularly to assess whether they lead, first, to the development of photoprotection so that these immune changes are reduced or no longer occur, and, secondly, to the development of photoprotection against the normal downregulation of immunity induced by a high UV dose. For almost all the parameters evaluated in this review--epidermal DNA damage/erythema, urocanic acid, Langerhans and dendritic cells, natural killer cells, macrophages, mast cells, contact and delayed hypersensitivity responses--none, aside from epidermal DNA damage/erythema and macrophage phagocytic activity, show convincing evidence of photoadaptation or, where appropriate, photoprotection. It is concluded that repeatedly irradiating individuals with UVR is likely to continue to result in downregulation of immunity.  相似文献   

14.
Using a deuterium UV source, we have investigated the response of a number of commercially available thermoluminescence (TL) dosimeters (TLDs) to UV radiation (UVR), including LiF : Mg, Cu, P (TLD-100 H), CaF2 : Dy (TLD-200), CaF2 : Mn (TLD-400), Al2O3 (TLD-500), 7LiF : Mg, Cu, P (TLD-700 H) and CaSO4 : Dy (TLD-900). The intrinsic method was used to detect UVR, while trap depth and frequency factors were estimated using the initial rise method. We have studied TL intensity as a function of exposure time, observing high sensitivity of TLD-500 to UVR. Conversely, TLD-400 displays weak sensitivity to these same radiations. Although TLD-900 and TLD-200 are both less sensitive to UVR than TLD-500, they each provide a linear response to UVR. The possible use of these phosphors as UV dosimeters has been further appraised, examining thermal fading effects and fading due to light exposure.  相似文献   

15.
Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC‐exposed epidermis showed a predominance of UV‐signature mutation, which occurred frequently in 5′‐TCG‐3′, 5′‐TCA‐3′ and 5′‐CCA‐3′ contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5′‐TCG‐3′ sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV‐signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context‐dependent cytosine deamination propensity of CPD.  相似文献   

16.
Acute exposure to UV radiation (UVR) causes visible skin damage such as erythema and results in local and systemic immunosuppression while chronic exposure can result in photocarcinogenesis. These deleterious effects can be quantified by histology and by bioassays of key biological markers, including matrix metalloproteinases (MMPs), or tryptophan moieties. We now report our results in quantifying UV skin damage with noninvasive optical methods based on reflectance and fluorescence spectroscopy and compare these noninvasive measurements to histopathology and MMP-13 expression. A solar simulator with spectral output nearly identical to that of solar radiation was developed and used in our experiments. SKH1 hairless mice were exposed to solar-simulated UVR at a total dose of 21 MED delivered over 10 weeks. Changes in oxygenated and deoxygenated hemoglobin were measured by diffuse reflectance spectroscopy, and tryptophan changes were monitored via a fluorescence monitor. Our results show that there is an increase in erythema, skin fluorescence, sunburn cells and MMP-13 after a series of suberythemal doses of UV irradiation on a hairless mouse animal model. Increased skin fluorescence is observed with increasing UV exposure. The levels of MMP-13 increase as the cumulative UV dose increases but their increase does not correspond to noninvasively measured changes.  相似文献   

17.
UVR exposure is known to cause developmental defects in a variety of organisms including aquatic species but little is known about the underlying molecular mechanisms. In this work we used zebrafish (Danio rerio) embryos as a model system to characterize the UVR effects on fish species. Larval viability was measured for embryos exposed to several UVR spectral treatments by using a solar simulator lamp and an array of UV cutoff filters under controlled conditions in the laboratory. Survival rate and occurrence of development abnormalities, mainly caudal (posterior) notochord bending/torsion, were seriously affected in UV-exposed larvae reaching values of 53% and 72%, respectively, compared with non-UV-exposed larvae after 6 days postfertilization (dpf). In order to elucidate the molecular mechanisms involved, a matricellular glycoprotein named osteonectin and the expression of a DNA-repair related gene, p53, were studied in relation to UVR exposure. The results indicate that osteonectin and p53 expression were increased under UVR exposure due to wavelengths shorter than 335 nm (i.e. mainly UVB) and 350 nm (i.e. short UVA and UVB), respectively. Furthermore, parallel experiments with microinjections of osteonectin-capped RNA showed that malformations induced by osteonectin overexpression were similar to those observed after a UVR exposure. Consequently this study shows a potential role of osteonectin in morphological deformities induced by solar UV radiation in zebrafish embryos.  相似文献   

18.
Erythema (i.e. visible redness) and DNA damage caused by ultraviolet radiation (UVR) in human skin have similar action spectra and show good correlation after a single exposure to UVR. We explored the potential to use instrumental assessments of erythema as a surrogate for DNA damage after repeated exposures to UVR. We exposed 40 human subjects to three different exposure schedules using two different UVR sources. Cyclobutane‐pyrimidine dimers (CPDs) in skin biopsies were measured by immunofluorescence, and erythema was assessed by both the Erythemal Index (EI) and the Oxy‐hemoglobin (Oxy‐Hb) content. Surprisingly, the skin with the highest cumulative dose ended up with the lowest level of DNA damage, and with the least erythema, as assessed by Oxy‐Hb (but not EI) 24 h after the last UV exposure. Although the level of CPDs, on average, paralleled Oxy‐Hb (R2 = 0.80–0.94, P = 0.03–0.11), the correlation did not hold for the pooled individual measurements (R2 = 0.009, P = 0.37) due to potential individual differences in UV‐induced photoadaptation. We suggest that the methodology may be optimized to improve the correlation between DNA damage level and erythema to enable noninvasive risk assessment based on erythema/Oxy‐Hb content for individual human subjects.  相似文献   

19.
This study reports 5 years of (1998-2003) data on continuous solar-irradiation measurements from a scanning spectroradiometer (SUV-100) in Valdivia, Chile (39 degrees S), accompanied by evaluation of the impact of ultraviolet radiation (UVR) on marine macroalgae of this site. UVR conditions showed a strong seasonal variation, which was less pronounced toward longer wavelengths. Daily maximum dose rates (clear days) averaged in winter-summer: UV-B(290-315 nm) 0.30-2.1, UV-B(290-320 nm) 0.70-3.7, UV-A(315-400 nm) 20.6-62.1, UV-A(320-400 nm) 20.2-60.5 W m(-2), and photosynthetically active radiation (PAR) 969-2423 micromol m(-2) s(-1). The corresponding daily doses (all the days) ranged: UV-B(290-315 nm) 2.6-40.7, UV-B(290-320 nm) 6.7-78.5, UV-A(315-400 nm) 228-1539, UV-A(320-400 nm) 224-1501, and PAR 2008-13308 kJ m(-2) d(-1). Taking into consideration action spectra of a biological interest, the risk of UV exposure could be up to 37 times higher in summer than in winter. The photosynthetic activity (as maximum quantum yield of chlorophyll fluorescence, F(v)/F(m)) of the brown alga Lessonia nigrescens from the infralittoral zone was markedly more sensitive to UVR than of the green alga Enteromorpha intestinalis from the upper midlittoral, and the UV-B wave band increased markedly photoinhibition. In L. nigrescens, maximal photoinhibition (40%) took place at weighted (the action spectrum for photoinhibition of photosynthesis) UVR doses of 800 kJ m(-2), irrespective of the season (corresponding midsummer daily dose in Valdivia is 480 kJ m(-2)). In winter, when this alga was at its most sensitive, the weighted UV dose causing 35-40% photoinhibition was around 200 kJ m(-2). In E. intestinalis, weighted doses of 800 kJ m(-2) resulted in low photoinhibition (<10 %) and no clear seasonal patterns could be inferred. These results confirm that midday summer levels of UV-B and their daily doses in southern Chile are high enough to produce stress to intertidal macroalgae.  相似文献   

20.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号