首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Polymeric thin films have been awakening continuous and growing interest for application in nanotechnology. For such applications, the assessment of their (nano)mechanical properties is a key issue, since they may dramatically vary between the bulk and the thin film state, even for the same polymer. Therefore, techniques are required for the in situ characterization of mechanical properties of thin films that must be nondestructive or only minimally destructive. Also, they must also be able to probe nanometer-thick ultrathin films and layers and capable of imaging the mechanical properties of the sample with nanometer lateral resolution, since, for instance, at these scales blends or copolymers are not uniform, their phases being separated. Atomic force microscopy (AFM) has been proposed as a tool for the development of a number of techniques that match such requirements. In this review, we describe the state of the art of the main AFM-based methods for qualitative and quantitative single-point measurements and imaging of mechanical properties of polymeric thin films, illustrating their specific merits and limitations.  相似文献   

2.
Polymers confined to small dimensions and that undergo high strains can show remarkable nonlinear mechanics, which must be understood to accurately predict the functioning of nanoscale polymer devices. In this paper we describe the determination of the mechanical properties of ultrathin polydimethylsiloxane (PDMS) films undergoing large strains, using atomic force microscope (AFM) indentation with a spherical tip. The PDMS was molded into extremely thin films of variable thickness and adhered to a hard substrate. We found that for films below 1 μm in thickness the Young's modulus increased with decreasing sample thickness with a power law exponent of 1.35. Furthermore, as the soft PDMS film was indented, significant strain hardening was observed as the indentation depth approached 45% of the sample thickness. To properly quantify the nonlinear mechanical measurements, we utilized a pointwise Hertzian model which assumes only piecewise linearity on the part of the probed material. This analysis revealed three regions within the material. A linear region with a constant Young's modulus was seen for compression up to 45% strain. At strains higher than 45%, a marked increase in Young's modulus was measured. The onset of strain induced stiffening is well modeled by finite element modeling and occurs as stress contours expanding from the probe and the substrate overlap. A third region of mechanical variation occurred at small indentations of less than 10 nm. The pointwise Young's modulus at small indentations was several orders of magnitude higher than that in the linear elasticity region; we studied and ruled out causes responsible for this phenomenon. In total, these effects can cause thin elastomer films to become extremely stiff such that the measured Young's modulus is over a 100-fold higher than the bulk PDMS. Therefore, the mechanics of a polymer can be changed by adjusting the geometry of a material, in addition to changing the material itself. In addition to understanding the mechanics of thin polymer films, this work provides an excellent test of experimental techniques to measure the mechanics of other nonlinear and heterogeneous materials such as biological cells.  相似文献   

3.
Polydimethylsiloxane (PDMS) reinforced by nanoclay platelets exhibits excellent mechanical properties for microfluidic systems. We tested PDMS-clay nanocomposite thin films under flat-ended cylindrical indentation and measured the elastic modulus and shear strength. A simple formulation based on a shear-lag model, fed by numerical simulations, was introduced to estimate the interfacial shear strength of thin films. Increase in the nanoclay content improved the elasticity of PDMS-clay thin films but reduced their interfacial shear strength. Shear thinning behavior of nanoclay platelets probably reduced the strength of PDMS nanocomposites. The proposed approach can be used for characterization of any polymeric thin films.  相似文献   

4.
With increasing interest in nanoscience and nanotechnology, the fundamental underpinnings of what makes materials strong and durable are under critical investigation. Recent findings suggest that when materials are reduced in extent to nanoscopic proportions, they exhibit enhanced strength, specifically in the form of higher moduli than are measured on macroscopic objects of the same composition. Force-deformation behavior of nanostructures subjected to concentrated loads, such as with atomic force microscopy (AFM), can yield detailed information and insight about their local mechanical properties. We review and evaluate the effectiveness of deformation and indentation tests used in determining the elastic modulus of nanobeams, nanosprings, thin films, biological samples, dendrimers, and fluid droplets. Obstacles yet remain in the determination of absolute, quantitative modulus data at the nanoscale. In spite of basic limitations, recent developments in advanced nanomechanical techniques will facilitate improvement in our understanding of material strength and aging from molecules and colloids to the macroscale.  相似文献   

5.
Surface-immobilized poly(N-isopropyl acrylamide) (pNIPAM) is currently used for a wide variety of biosensor and biomaterial applications. A thorough characterization of the surface properties of pNIPAM thin films will benefit those applications. In this work, we present analysis of a plasma-polymerized NIPAM (ppNIPAM) coating by multiple surface analytical techniques, including time-of-flight secondary-ion mass spectrometry (ToF-SIMS), contact angle measurement, atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. ToF-SIMS data show that the plasma-deposited NIPAM polymer on the substrate is cross-linked with a good retention of the monomer integrity. Contact angle results confirm the thermoresponsive nature of the film as observed by a change of surface wettability as a function of temperature. Topographic and force-distance curve measurements by AFM further demonstrate that the grafted film shrinks or swells depending on the temperature of the aqueous environment. A clear transition of the elastic modulus is observed at 31-32 degrees C. The change of the surface wettability and mechanical properties vs temperature are attributed to different conformations taken by the polymer, which is reflected on the outmost surface as distinct side chain groups orienting outward at different temperatures as measured by SFG. The results suggest that a ppNIPAM thin film on a substrate experiences similar mechanical and chemical changes to pNIPAM bulk polymers in solution. The SFG result provides evidence supporting the current theory of the lower critical solution temperature (LCST) behavior of pNIPAM.  相似文献   

6.
We investigated the contact behaviors of a nanoscopic stiff thin film bonded to a compliant substrate and derived an analytical solution for determining the elastic modulus of thin films. Microscopic contact deformations of the gold and polydopamine thin films (<200 nm) coated on polydimethylsiloxane elastomers were measured by indenting a soft tip and analyzed in the framework of the classical plate theory and Johnson-Kendall-Roberts (JKR) contact mechanics. The analysis of this thin film contact mechanics focused on the bending and stretching resistance of thin films and is fundamentally different from conventional indentation measurements where the focus is on the fracture and compression of the films. The analytical solution of the elastic modulus of nanoscopic thin films was validated experimentally using 50 and 100 nm gold thin films coated on polydimethylsiloxane elastomers. The technical application of this analysis was further demonstrated by measuring the elastic modulus of thin films of polydopamine, a recently discovered biomimetic universal coating material. Furthermore, the method presented here is able to quantify the contact behaviors of nanoscopic thin films, effectively providing fundamental design parameters, the elastic modulus, and the work of adhesion, crucial for transferring them effectively into practical applications.  相似文献   

7.
An epoxy based thermosetting matrix was modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer, obtaining cured nanostructured thermosetting systems. Resulting systems were investigated using a novel atomic force microscopy (AFM) imaging mode, known as PeakForce quantitative nanomechanical property mapping (PeakForce QNM), that allows for the quantitative mapping of the local mechanical properties, such as adhesion and elastic modulus, together with the topography. It was demonstrated the capacity of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus, being able to distinguish between the mechanical properties of the two phases present in the analyzed thermosetting systems.  相似文献   

8.
Mechanical properties of model and natural gels have recently been demonstrated to play an important role in various cellular processes such as adhesion, proliferation, and differentiation, besides events triggered by chemical ligands. Understanding the biomaterial/cell interface is particularly important in many tissue engineering applications and in implant surgery. One of the final goals would be to control cellular processes precisely at the biomaterial surface and to guide tissue regeneration. In this work, we investigate the substrate mechanical effect on cell adhesion for thin polyelectrolyte multilayer (PEM) films, which can be easily deposited on any type of material. The films were cross linked by means of a water-soluble carbodiimide (EDC), and the film elastic modulus was determined using the AFM nanoindentation technique with a colloidal probe. The Young's modulus could be varied over 2 orders of magnitude (from 3 to 400 kPa) for wet poly(L-lysine)/hyaluronan (PLL/HA) films by changing the EDC concentration. The chemical changes upon cross linking were characterized by means of Fourier transform infrared spectroscopy (FTIR). We demonstrated that the adhesion and spreading of human chondrosarcoma cells directly depend on the Young's modulus. These data indicate that, besides the chemical properties of the polyelectrolytes, the substrate mechanics of PEM films is an important parameter influencing cell adhesion and that PEM offer a new way to prepare thin films of tunable mechanical properties with large potential biomedical applications including drug release.  相似文献   

9.
AFM nanoindentation was investigated as a method for determining the micromechanical properties of polymer materials. It is generally accepted that the shape of the tip of the cantilever undergoes a change in a standard AFM setup. The shape defines the projected contact area, so it is a parameter directly proportional to the elastic modulus; any change in the shape thus affects the accuracy of the results. The method suggested in this paper relies on the introduction of an experimentally determined tip-area function. Values for Young’s modulus were calculated for EPDM samples with different degrees of cure and crystallinity. The degree of crystallinity has a greater impact on the mechanical properties of the material than the degree of cure. Depending on the amplitude of the indentation, the E-moduli determined by AFM are systematically higher. When studying different regions of polymer materials, the values of the E-modulus determined by AFM become identical to those measured by means of DMA on extrapolation of the modulus at zero indentation.  相似文献   

10.
The physical and mechanical properties of composite materials based on epoxy-amine systems—diglycidyl ether of diphenylolpropane-eutectic mixture of aromatic amines (40 wt % m-phenylenediamine-60 wt % 4,4′-diaminodiphenylmethane) and epoxy-diane resin ED-20-eutectic mixture of aromatic diamines with ultralow contents (≤0.1 wt %) of single-layer carbon nanotubes—are studied. It is shown that, for the concentration dependence of the modulus of elasticity during tension, the additivity rule is obeyed only at the lowest concentrations of carbon nanotubes. In this case, the presence of near-surface layers of a matrix with an increased elastic modulus should be considered.  相似文献   

11.
Mechanical properties of protein crystals and aggregates depend on the conformational and structural properties of individual protein molecules as well as on the packing density and structure within solid materials. An atomic force microscopy (AFM)-based approach is developed to measure the elastic modulus of small protein crystals by nanoindentation and is applied to measure the elasticity of insulin crystals. The top face of the crystals deposited on mica substrates is identified as the (001) face. Insulin crystals exhibit a nearly elastic response during the compression cycle. The elastic modulus measured on the top face has asymmetric distribution with a significant width. This width is related to the uncertainty in the deflection sensitivity. A model that takes into account the distribution of the sensitivity values is used to correct the elastic modulus. Measurements performed in aqueous buffer on several crystals at different locations with three different AFM probes give a mean elastic modulus of 164 +/- 10 MPa. This value is close to the static elastic moduli of other protein crystals measured by different techniques that are usually measured in the range from 100 MPa to 1 GPa. The measured modulus of insulin crystals falls between the elastic modulus values of insulin amyloid fibrils measured previously at two orthogonal directions (a modulus of 14 MPa was measured by compressing the fibril in the direction perpendicular to the fibril axis, and a modulus of 3.3 GPa was measured in the direction along the fibril axis). This comparison indicates the heterogeneous structure of fibrils in the direction perpendicular to the fibril axis, with a packing density of the amyloid fibril core that is higher than the average packing density in insulin crystals. The mechanical wear of insulin crystals is detected during AFM measurements. In nanoindentation experiments on insulin crystal, the compressive load by the AFM tip ( approximately 1 nN, corresponding to a pressure of around 5 MPa) occasionally removes protein molecules from the top or the second top layer of insulin crystal in a sequential manner. The molecular model of this surface damage is proposed. In addition, the removal of the multiple layers of molecules is observed during the AC-mode imaging in aqueous buffer. The number of removed layers depends on the scan size.  相似文献   

12.
The micromechanical properties of pure and cholesterol modified egg yolk phosphatidylcholine (EggPC) vesicles prepared by sonication were studied by atomic force microscopy (AFM) on mica surface. The force curves between an AFM tip and an unruptured vesicle were obtained by contact mode. During approach, two repulsion regions with two breaks were observed. The slopes of the two repulsive force regimes for the pure EggPC vesicles are determined to be several times lower than that of EggPC/cholesterol vesicles. The elastic properties from force plot analysis based on the Hertzian model showed that Young's modulus (E) and the bending modulus (kc) of cholesterol-modified vesicles increased several-fold compared with pure EggPC vesicles. The significant difference is attributed to the enhanced rigidity of the EggPC vesicles as a result of the incorporation of cholesterol molecules. The behavior of cholesterol-modified vesicles upon adsorption is different from that in solution as revealed by mechanical properties. The results indicate that AFM can provide a direct method to measure the mechanical properties of adsorbed small liposomes and to detect the stability change of liposomes.  相似文献   

13.
The combination of an atomic force microscope (AFM) with a Confocal Raman Microscope (CRM) has been used to study the composition of various thin films of polymer blends. The high spatial resolution of the AFM enables the morphological characterization of the polymer blends on the nanometer scale. Furthermore, when operating the AFM in Digital Pulsed Force Mode (DPFM), topographic information and local stiffness can be simultaneously recorded. This allows the material-sensitive characterization of heterogeneous materials. Thin films where PMMA (at room temperature a glassy polymer) is blended with two different styrene-butadiene rubbers are investigated. The presence of PMMA in both phase-separated thin films allows the comparison of the mechanical properties of the two different rubber phases using DPFM-AFM. When PMMA is blended with PET due to their similar mechanical properties (both are in the glassy state at room temperature) the assignment of the two phases to the corresponding polymers by AFM is rather difficult. Here, Raman spectroscopy provides additional information on the chemical composition of materials. In combination with a confocal microscope, the spatial distribution of the various phases can be determined with a resolution down to 200 nm. Therefore, the topographically different structures observed in AFM images can be associated to the chemical composition by using the Confocal Raman Microscope (CRM).  相似文献   

14.
Photo-cross-linkable polyelectrolyte multilayers were made from poly(allylamine) (PAH) and poly(acrylic acid) (PAA) modified with a photosensitive benzophenone. Nanoindentation, using atomic force microscopy (AFM) of these and unmodified PAH/PAA multilayers, was used to assess their mechanical properties in situ under an aqueous buffer. Under the conditions employed (and a 20 nm radius AFM tip), reliable nanoindentations that appeared to be decoupled from the properties of the silicon substrate were obtained for films greater than 150 nm in thickness. A strong difference in the apparent modulus was observed for films terminated with positive as compared to negative polyelectrolytes. Films terminated with PAA were more glassy, suggesting better charge matching of polyelectrolytes. Multilayers irradiated for up to 100 min showed a smooth, controlled increase in the modulus with little change in the water contact angle. The permeability to iodide ion, measured electrochemically, also decreased in a controlled fashion.  相似文献   

15.
Metal-organic framework (MOF) thin films currently lack the mechanical stability needed for electronic device applications. Polymer-based metal-organic frameworks (polyMOFs) have been suggested to provide mechanical advantages over MOFs, however, the mechanical properties of polyMOFs have not yet been characterized. In this work, we developed a method to synthesize continuous sub-5 μm polyUiO-66(Zr) films on Au substrates, which allowed us to undertake initial mechanical property investigations. Comparisons between polyUiO-66 and UiO-66 thin films determined polyUiO-66 thin films exhibit a lower modulus but similar hardness to UiO-66 thin films. The initial mechanical characterization indicates that further development is needed to leverage the mechanical property advantages of polyMOFs over MOFs. Additionally, the demonstration in this work of a continuous surface-supported polyUiO-66 thin film enables utilization of this emerging class of polyMOF materials in sensors and devices applications.  相似文献   

16.
Molybdenum oxide thin films were prepared electrochemically onto the selenium predeposited tin oxide-coated glass substrates using 0.22 M sodium citrate (C6H5Na3O7) solution (pH 8.3) and sodium molybdate as a precursor. Cyclic voltammetry was used to determine the deposition potential effects on molybdenum compound speciation, while quantitative thin film composition was obtained from X-ray photoelectron spectroscopy depth profiles. Thin molybdenum film growth and composition was potential dependant. Predominant molybdenum species was Mo(IV) at all deposition potentials and deposition times. Optical properties of the molybdenum oxide thin films were determined using UV–VIS spectroscopy. The absorption edge varied between 560 and 650 nm, whereas optical band gap values—between 1.79 and 2.19 eV—well within the limits for solar light-induced chemical reactions.  相似文献   

17.
We describe a method that combines colloidal probe atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) to characterize the mechanical properties of thin and solvated polymer films. When analyzing polymer films, a fundamental problem in colloidal probe AFM experiments is to determine the distance at closest approach between the probe and the substrate on which the film is deposited. By combining AFM and RICM in situ, forces and absolute distances can be measured simultaneously. Using the combined setup, we quantify the compressive mechanics of films of the polysaccharide hyaluronan that is end-grafted to a supported lipid bilayer. The experimental data, and comparison with polymer theory, show that hyaluronan films are well-described as elastic, very soft and highly solvated polymer brushes. The data on these well-defined films should be a useful reference for the investigation of the more complex hyaluronan-rich coats that surround many living cells.  相似文献   

18.
This article discusses AFM-based localized thermal analysis of crosslinked polymer coatings based on a recent breakthrough in nanoscale thermal probe technology. The addition of a thermal tip to a conventional AFM adds a new and valuable capability of spatially resolved thermal analysis to the AFM. It is particularly useful for thin films since it enables the measurement of transition temperatures (melting (T m) or glass (T g)) on selected regions of the sample aiding in the identification and characterization of phases on the length scales approaching macromolecular dimensions. Examples include the monitoring of the softening point of automotive clearcoat systems, as a function of cure time and cure temperature and characterization of degradation and embrittlement of weathered acrylic-polyurethane coatings. Comparison of nano thermal analysis with bulk DSC and MDSC is made and its inherent advantages over DSC in analyzing surfaces, is demonstrated.  相似文献   

19.
Cast film composites have been prepared from aqueous polymer solutions containing nanometric silica particles. The polymers were polyvinyl alcohol (PVA), hydroxypropylmethylcellulose (HPMC) and a blend of PVA‐HPMC polymers. In the aqueous dispersions, the polymer–silica interactions were studied through adsorption isotherms. These experiments indicated that HPMC has a high affinity for silica surfaces, and can adsorb at high coverage; conversely, low affinity and low coverage were found in the case of PVA. In the films, the organization of silica particles was investigated through transmission electron microscopy (TEM) and small‐angle neutron scattering (SANS). Both methods showed that the silica particles were well‐dispersed in the HPMC films and aggregated in the PVA films. The mechanical properties of the composite films were evaluated using tensile strength measurements. Both polymers were solid materials, with a high‐elastic modulus (65 MPa for HPMC and 291 for PVA) and a low‐maximum elongation at break (0.15 mm for HPMC and 4.12 mm for PVA). In HPMC films, the presence of silica particles led to an increase in the modulus and a decrease in the stress at break. In PVA films, the modulus decreased but the stress at break increased upon adding silica. Accordingly, the polymer/silica interaction can be used to tune the mechanical properties of such composite films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1134–1146, 2006  相似文献   

20.
The integrity, function, and performance of biomedical devices having thin polymeric coatings are critically dependent on the mechanical properties of the film, including the elastic modulus. In this report, the elastic moduli of several tyrosine-derived polycarbonate thin films, specifically desaminotyrosyl ethyl tyrosine polycarbonates p(DTE carbonate), an iodinated derivative p(I(2)-DTE carbonate), and several discrete blends are measured using a method based on surface wrinkling. The data shows that the elastic modulus does not vary significantly with the blend composition as the weight percentage of p(I(2)-DTE carbonate) increases for films of uniform thickness in the range of 67 to 200 nm. As a function of film thickness, the observed elastic moduli of p(DTE carbonate), p(I(2)-DTE carbonate) and their 50:50 by mass blend show little variation over the range 30 to 200 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号