首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Gas chromatography/mass spectrometry and selective derivatisation techniques have been used to identify urinary metabolites of methyltestosterone following oral administration to the greyhound. Several metabolites were identified including reduced, mono‐, di‐ and trihydroxylated steroids. The major metabolites observed were 17α‐methyl‐5β‐androstane‐3α‐17β‐diol, 17α‐methyl‐5β‐androstane‐3α,16α,17β‐triol, and a further compound tentatively identified as 17α‐methyl‐5z‐androstane‐6z,17β‐triol. The most abundant of these was the 17α‐methyl‐5β‐androstane‐3α,16α,17β‐triol. This metabolite was identified by comparison with a reference standard synthesised using a Grignard procedure and characterised using trimethylsilyl (TMS) and acetonide‐TMS derivatisation techniques. There did not appear to be any evidence for 16β‐hydroxylation as a phase I metabolic transformation in the greyhound. However, significant quantities of 16α‐hydroxy metabolites were detected. Selective enzymatic hydrolysis procedures indicated that the major metabolites identified were excreted as glucuronic acid conjugates. Metabolic transformations observed in the greyhound have been compared with those of other mammalian species and are discussed here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, mesterolone metabolic profiles were investigated carefully. Mesterolone was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadruple time‐of‐flight mass spectrometry (LC‐QTOFMS) for the first time. Liquid–liquid extraction was applied to processing urine samples, and dilute‐shoot analyses of intact metabolites were also presented. In LC‐QTOFMS analysis, chromatographic peaks for potential metabolites were hunt down by using the theoretical [M–H]? as target ions in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Ten metabolites including seven new sulfate and three glucuronide conjugates were found for mesterolone. Because of no useful fragment ion for structural elucidation, gas chromatography–mass spectrometry instrumentation was employed to obtain structural details of the trimethylsilylated phase I metabolite released after solvolysis. Thus, their potential structures were proposed particularly by a combined MS approach. All the metabolites were also evaluated in terms of how long they could be detected, and S1 (1α‐methyl‐5α‐androst‐3‐one‐17β‐sulfate) together with S2 (1α‐methyl‐5α‐androst‐17‐one‐3β‐sulfate) was detected up to 9 days after oral administration, which could be the new potential biomarkers for mesterolone misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The development and application of a combined gas chromatography/thermal conversion/isotope ratio mass spectrometry (GC/TC/IRMS) method for D/H ratio determination of endogenous urinary steroids are presented. The key element in sample preparation was the consecutive cleanup with high‐performance liquid chromatography of initially native and subsequently acetylated steroids. This strategy enabled sufficient cleanup off all target analytes for determination of their respective D/H values. Ten steroids (11β‐hydroxyandrosterone, 5α‐androst‐16‐en‐3α‐ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5α‐androstan‐3α,17β‐diol, 5β‐androstan‐3α,17β‐diol and dehydroepiandrosterone) were measured from a single urine specimen. Depending on the biological background, the determination limit for all steroids ranged from 10 to 15 ng/mL for a 20 mL specimen. The method was validated by application of linear mixing models on each steroid and covered repeatability and reproducibility. The specificity of the procedure was ensured by gas chromatography/mass spectrometry (GC/MS) analysis of the sample using equivalent chromatographic conditions to those employed in the GC/TC/IRMS measurement. Within the sample preparation, no isotopic fractionation was observed, and no amount‐dependent shift of the D/H ratios during the measurement was noticed. Possible memory effects occurring during IRMS measurements were corrected by applying a simple rule of proportion. In order to determine the naturally occurring D/H ratios of all implemented steroids, a population of 18 male subjects was analyzed. Relevant mean Δ values among selected steroids were calculated which allowed us to study the metabolic pathways and production sites of all the implemented steroids with additional consideration of the corresponding 13C/12C ratios. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Gestrinone was studied by high performance liquid chromatography (HPLC) for screening and by gas chromatography/mass spectrometry (GC/MS) for confirmation. When the chromatograms of blank, spiked urine and dosed urine were compared by HPLC, two unknown metabolites were found and these were excreted as the conjugated forms. Metabolites 1 and 2 were tested by LC/MS and LC/MS/MS and both had parent ions at m/z 325. The fragment ion of metabolite 1 was at m/z 263 and ions for metabolite 2 were m/z 307 [MH - H(2)O](+), 289, 279 and 241. LC/MS/MS of m/z 263 as the parent ion of metabolite 1 gave fragment ions at m/z 245 and 217, which were assumed to be [263 - H(2)O](+) and [235 - H(2)O](+), respectively. The trimethylsilyl (TMS)-enol-TMS ether derivative of gestrinone displayed three peaks in its GC/MS chromatogram, formed by tautomerism.  相似文献   

6.
Mesterolone (1α-methyl-5α-androstan-17β-ol-3-one) is a synthetic anabolic androgenic steroid (AAS) with reported abuses in human sports. As for other AAS, mesterolone is also a potential doping agent in equine sports. Metabolic studies on mesterolone have been reported for humans, whereas little is known about its metabolic fate in horses. This paper describes the studies of both the in vitro and in vivo metabolism of mesterolone in racehorses with an objective to identify the most appropriate target metabolites for detecting mesterolone administration.In vitro biotransformation studies of mesterolone were performed by incubating the steroid with horse liver microsomes. Metabolites in the incubation mixture were isolated by liquid-liquid extraction and analysed by gas chromatography-mass spectrometry (GC-MS) after acylation or silylation. Five metabolites (M1-M5) were detected. They were 1α-methyl-5α-androstan-3α-ol-17-one (M1), 1α-methyl-5α-androstan-3β-ol-17-one (M2), 1α-methyl-5α-androstane-3α,17β-diol (M3), 1α-methyl-5α-androstane-3β,17β-diol (M4), and 1α-methyl-5α-androstane-3,17-dione (M5). Of these in vitro metabolites, M1, M3, M4 and M5 were confirmed using authentic reference standards. M2 was tentatively identified by mass spectral comparison to M1.For the in vivo metabolic studies, Proviron® (20 tablets × 25 mg of mesterolone) was administered orally to two thoroughbred geldings. Pre- and post-administration urine samples were collected for analysis. Free and conjugated metabolites were isolated using solid-phase extraction and analysed by GC-MS as described for the in vitro studies. The results revealed that mesterolone was extensively metabolised and the parent drug was not detected in urine. Three metabolites detected in the in vitro studies, namely M1, M2 and M4, were also detected in post-administration urine samples. In addition, two stereoisomers each of 1α-methyl-5α-androstane-3,17α-diol (M6 and M7) and 1α-methyl-5α-androstane-3,16-diol-17-one (M8 and M9), and an 18-hydroxylated metabolite 1α-methyl-5α-androstane-3,18-diol-17-one (M10) were also detected. The metabolic pathway for mesterolone is postulated. These studies have shown that metabolites M8, M9 and M10 could be used as potential screening targets for controlling the misuse of mesterolone in horses.  相似文献   

7.
The urinary metabolism of the irreversible aromatase inhibitor androsta‐1,4,6‐triene‐3,17‐dione was investigated. It is mainly excreted unchanged and as its 17β‐hydroxy analogue. For confirmation, 17β‐hydroxyandrosta‐1,4,6‐trien‐3‐one was synthesized and characterized by nuclear magnetic resonance (NMR) in addition to the parent compound. In addition, several reduced metabolites were detected in the post‐administration urines, namely 17β‐hydroxyandrosta‐1,4‐dien‐3‐one (boldenone), 17β‐hydroxy‐5β‐androst‐1‐en‐3‐one (boldenone metabolite), 17β‐hydroxyandrosta‐4,6‐dien‐3‐one, and androsta‐4,6‐diene‐3,17‐dione. The identification was performed by comparison of the metabolites with reference material utilizing gas chromatography/mass spectrometry (GC/MS) of the underivatized compounds and GC/MS and GC/tandem mass spectrometry (MS/MS) of their trimethylsilyl (TMS) derivatives. Alterations in the steroid profile were also observed, most obviously in the androsterone/testosterone ratio. Even if not explicitly listed, androsta‐1,4,6‐triene‐3,17‐dione is classified as a prohibited substance in sports by the World Anti‐Doping Agency (WADA) due to its aromatase‐inhibiting properties. In 2006 three samples from human routine sports doping control tested positive for metabolites of androsta‐1,4,6‐triene‐3,17‐dione. The samples were initially found suspicious for the boldenone metabolite 17β‐hydroxy‐5β‐androst‐1‐en‐3‐one. Since metabolites of androst‐4‐ene‐3,6,17‐trione were also present in the urine samples, it is presumed that these findings were due to the administration of a product like ‘Novedex Xtreme’, which could be easily obtained from the sport supplement market. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The in vitro metabolism of CJ-11,972, (2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-yl)-(5-tert-butyl-2-methoxybenzyl)amine, an NK1 receptor antagonist, was studied in human liver microsomes and recombinant human CYP isoforms. Liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (LC/MS/MS) coupled to radioactive detection were used to detect and identify the metabolites. CJ-11,972 was extensively metabolized in human liver microsomes and recombinant human CYP 3A4/3A5 isoforms. A total of fourteen metabolites were identified by a combination of various MS techniques. The major metabolic pathways were due to oxidation of the tert-butyl moiety to form an alcohol (M6) and/or O-demethylation of the anisole moiety. The alcohol metabolite M6 was further oxidized to the corresponding aldehyde (M7) and carboxylic acid (M4). Two unusual metabolites (M13, M17), formed by C-demethylation of the tert-butyl group, were identified as 2-{3-[(2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-ylamino)methyl]-4-methoxyphenyl}propan-2-ol and (2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-yl)-(5-isopropenyl-2-methoxybenzyl)amine. A plausible mechanism for C-demethylation may involve oxidation of M6 to form an aldehyde metabolite (M7), followed by cytochrome P450-mediated deformylation leaving an unstable carbon-centered radical, which would quickly form either the alcohol metabolite M13 and the olefin metabolite M17.  相似文献   

9.
申秀民  刘玉美  何兰 《中国化学》2005,23(3):305-309
Lophenol, cholest-4α-methyl-7-en-3β-ol (1), obtained from Dracaena cochinchinensis (Lour.) S. C. Chen, was structurally modified. It was acetylated to protect 3β-hydroxyl group, and then oxidised by selenium dioxide in acetic acid to give cholest-4a-methyl-8-en-3β, Ta-diol diacetate (3). This compound 3 is unstable in chloroform solution or when heated and easily converted to a diene compound, cholest-4a-methyl-7,14-dien-3β-ol acetate (4). The structures of 3 and 4 were elucidated by means of IR, ^1H NMR, ^13C NMR and MS, and the absolute configuration of 3 was established by X-ray crystallography. The property of 3 was also discussed in this paper. Both 3 and 4 are new compounds and were reported for the first time.  相似文献   

10.
This paper describes the application of gas chromatography–mass spectrometry (GC‐MS) for in vitro and in vivo studies of 6‐OXO in horses, with a special aim to identify the most appropriate target metabolite to be monitored for controlling the administration of 6‐OXO in racehorses. In vitro studies of 6‐OXO were performed using horse liver microsomes. The major biotransformation observed was reduction of one keto group at the C3 or C6 positions. Three in vitro metabolites, namely 6α‐hydroxyandrost‐4‐ene‐3,17‐dione (M1), 3α‐hydroxyandrost‐4‐ene‐6,17‐dione (M2a) and 3β‐hydroxyandrost‐4‐ene‐6,17‐dione (M2b) were identified. For the in vivo studies, two thoroughbred geldings were each administered orally with 500 mg of androst‐4‐ene‐3,6,17‐trione (5 capsules of 6‐OXO®) by stomach tubing. The results revealed that 6‐OXO was extensively metabolized. The three in vitro metabolites (M1, M2a and M2b) identified earlier were all detected in post‐administration urine samples. In addition, seven other urinary metabolites, derived from a further reduction of either one of the remaining keto groups or one of the remaining keto groups and the olefin group, were identified. These metabolites included 6α,17β‐dihydroxyandrost‐4‐en‐3‐one (M3a), 6,17‐dihydroxyandrost‐4‐en‐3‐one (M3b and M3c), 3β,6β‐dihydroxyandrost‐4‐en‐17‐one (M4a), 3,6‐dihydroxyandrost‐4‐en‐17‐one (M4b), 3,6‐dihydroxyandrostan‐17‐one (M5) and 3,17‐dihydroxyandrostan‐6‐one (M6). The longest detection time observed in urine was up to 46 h for the M6 metabolite. For blood samples, the peak 6‐OXO plasma concentration was observed 1 h post administration. Plasma 6‐OXO decreased rapidly and was not detectable 12 h post administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, clostebol metabolic profiles were investigated carefully. Clostebol was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadrupole time‐of‐flight mass spectrometry (MS) using full scan and targeted MS/MS techniques with accurate mass measurement for the first time. Liquid–liquid extraction and direct injection were applied to processing urine samples. Chromatographic peaks for potential metabolites were found by using the theoretical [M–H]? as target ion in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Fourteen metabolites were found for clostebol, and nine unreported metabolites (two free ones and seven sulfate conjugates) were identified by MS, and their potential structures were proposed based on fragmentation and metabolism pathways. Four glucuronide conjugates were also first reported. All the metabolites were evaluated in terms of how long they could be detected and S1 (4ξ‐chloro‐5ξ‐androst‐3ξ‐ol‐17‐one‐3ξ‐sulfate) was considered to be the long‐term metabolite for clostebol misuse detected up to 25 days by liquid–liquid extraction and 14 days by direct injection analysis after oral administration. Five conjugated metabolites (M2, M5, S2, S6 and S7) could also be the alternative biomarkers for clostebol misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC‐CI‐MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long‐term metabolite (18‐nor‐17β‐hydroxymethyl,17α‐methyl‐androst‐1,4,13‐trien‐3‐one) could be detected up to 26 days by using GC‐CI‐MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long‐term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Gestrinone was studied by HPLC for screening and by GC/MS for confirmation. Three unknown peaks were found by HPLC which are probably the metabolites of gestrinone, and conjugated gestrinone in dosed human urine. The metabolites and gestrinone were excreted as the conjugated forms. The total amounts of metabolite 1 and conjugated gestrinone, recovered after 48 h, were 0.20 and 0.32 mg, respectively. When metabolite 1 was tested by LC/MS and LC/MS/MS, the parent ion was m/z 327, [MH](+), and fragment ions were seen at m/z 309 [MH - H(2)O](+), 291 [MH - 2H(2)O](+), 283, 263 and 239. The TMS-enol-TMS ether derivative of gestrinone has three peaks in the GC/MS chromatogram formed by tautomerism. The reproducibility of the derivatization method was stable and recoveries were over 87% when spiked into blank urine.  相似文献   

14.
Current in silico tools were evaluated for their ability to predict metabolism and mass spectral fragmentation in the context of analytical toxicology practice. A metabolite prediction program (Lhasa Meteor), a metabolite detection program (Bruker MetaboliteDetect), and a fragmentation prediction program (ACD/MS Fragmenter) were used to assign phase I metabolites of the antipsychotic drug quetiapine in the liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) accurate mass data from ten autopsy urine samples. In the literature, the main metabolic routes of quetiapine have been reported to be sulfoxidation, oxidation to the corresponding carboxylic acid, N‐ and O‐dealkylation and hydroxylation. Of the 14 metabolites predicted by Meteor, eight were detected by LC/TOFMS in the urine samples with use of MetaboliteDetect software and manual inspection. An additional five hydroxy derivatives were detected, but not predicted by Meteor. The fragment structures provided by ACD/MS Fragmenter software confirmed the identification of the metabolites. Mean mass accuracy and isotopic pattern match (SigmaFit) values for the fragments were 2.40 ppm (0.62 mDa) and 0.010, respectively. ACD/MS Fragmenter, in particular, allowed metabolites with identical molecular formulae to be differentiated without a need to access the respective reference standards or reference spectra. This was well exemplified with the hydroxy/sulfoxy metabolites of quetiapine and their N‐ and O‐dealkylated forms. The procedure resulted in assigning 13 quetiapine metabolites in urine. The present approach is instrumental in developing an extensive database containing exact monoisotopic masses and verified retention times of drugs and their urinary metabolites for LC/TOFMS drug screening. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
WCK 771 is an l ‐arginine salt of levonadifloxacin (LND) being developed in intravenous dosage form and has recently completed a phase III trial in India. The pharmacokinetics of WCK 771, a novel anti‐MRSA fluoroquinolone, were examined in mice, rats, rabbits, dogs, monkeys and humans after systemic administration during pre‐clinical and clinical investigations. Urine and serum were evaluated for identification of metabolites. It was observed that LND mainly follows phase II biotransformation pathways. All of the species showed a different array of metabolites. In mice, rabbit and dog, the drug was mainly excreted in the form of O‐glucuronide (M7) and acyl glucuronide (M8) conjugates, whereas in rat and human major metabolite was sulfate conjugate (M6). Monkeys exhibited equal distribution of sulfate (M6) and glucuronide conjugates (M7, M8). In addition to these three major phase II metabolites; five phase I oxidative metabolites (M1, M2, M3, M4 and M5) were identified using liquid chromatography tandem mass spectrometry. Out of these eight metabolites M2, M3, M5, M7 and M8 are reported for the first time.  相似文献   

16.
Liquid chromatography‐mass spectrometry (LC‐MS) method revealed the plasma metabolite profiles in major depressive disorder patients treated with escitalopram (ECTP) (n = 7). Depression severity was assessed according to the 17‐item Hamilton Depression Rating Scale. Metabolic profiles were derived from major depressive disorder subject blood samples collected after ECTP treatment. Blood plasma was separated and processed in order to effectively extract metabolites, which were then analyzed using LC‐MS. We identified 19 metabolites and elucidated their structures using LC‐tandem MS (LC‐MS/MS) combined with elemental compositions derived from accurate mass measurements. We further used online H/D exchange experiments to verify the structural elucidations of each metabolite. Identifying molecular metabolites may provide critical insights into the pharmacological and clinical effects of ECTP treatment and may also provide useful information informing the development of new antidepressant treatments. These detailed plasma metabolite analyses may also be used to identify optimal dose concentrations in psychopharmacotherapeutic treatment through drug monitoring, as well as forming the basis for response predictions in depressed subjects.  相似文献   

17.
This paper describes the quantitation of acyl‐glucuronide metabolites (M26 and M5) of a cardiovascular‐drug (torcetrapib) from monkey urine, in the absence of their reference standards. LC/MS/MS assays for M1 and M4 (aglycones of M26 and M5, respectively) were characterized from normal and base‐treated urine, as their respective reference standards were available. The in vivo study samples containing M26 and M5 were treated with 1 n sodium hydroxide to hydrolyze them to their respective aglycones. The study samples were assayed for M1 and M4 before and after alkaline hydrolysis and the difference in the concentrations provided an estimate of the urinary levels of M26 and M5. Prior to the main sample analysis, conditions for alkaline hydrolysis of the glucuronides were optimized by incubating pooled study samples. During incubations, a prolonged increase in M4 levels over time was observed, which is inconsistent with the base‐hydrolysis of an acyl‐glucuronide (expected to hydrolyze rapidly). Possible interference of the metabolite M9 (an ether‐glucuronide metabolite isobaric to M4) was investigated to explain this observation using chromatographic and wet‐chemistry approaches. The strategies adopted herein established that the LC/MS/MS assay and our approach were reliable. The metabolite exposure was then correlated to toxicological observations to gain initial insights into the physiological role of these metabolites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Atazanavir (marketed as Reyataz®) is an important member of the human immunodeficiency virus protease inhibitor class. LC‐UV‐MSn experiments were designed to identify metabolites of atazanavir after incubations in human hepatocytes. Five major (M1–M5) and seven minor (M7–M12) metabolites were identified. The most abundant metabolite, M1, was formed by a mono‐oxidation on the t‐butyl group at the non‐prime side. The second most abundant metabolite, M2, was also a mono‐oxidation product, which has not yet been definitively identified. Metabolites, M3 and M4, were structural isomers, which were apparently formed by oxidative carbamate hydrolysis. The structure of M5 comprises the non‐prime side of atazanavir which contains a pyridinyl‐benzyl group. Metabolite M6a was formed by the cleavage of the pyridinyl‐benzyl side chain, as evidenced by the formation of the corresponding metabolic product, the pyridinyl‐benzoic acid (M6b). Mono‐oxidation also occurred on the pyridinyl‐benzyl group to produce the low abundance metabolite M8. Oxidation of the terminal methyl groups produced M9 and M10, respectively, which have low chemical stability. Trace‐level metabolites of di‐oxidations, M11 and M12, were also detected, but the complexity of the molecule precluded identification of the second oxidation site. To our knowledge, metabolites M6b and M8 have not been reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry‐based method for the measurement of stable carbon isotopes of endogenous urinary steroids excreted as sulphates is presented. The key element in sample preparation is the consecutive cleanup with high‐performance liquid chromatography of underivatized and acetylated steroids, which allows the isolation of seven analytes (pregn‐5‐ene‐3β,17α,20α‐triol, etiocholanolone, androsterone, epiandrosterone, dehydroepiandrosterone (DHEA), androst‐5‐ene‐3β,17β‐diol and androst‐5‐ene‐3β,17α‐diol) from a single urine specimen. These steroids are of particular importance to doping controls as they should enable the sensitive and retrospective detection of DHEA abuse by athletes. Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers the items, repeatability and reproducibility. The specificity was further demonstrated by gas chromatography/mass spectrometry for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring 13C/12C ratios and urinary concentrations of all implemented steroids, a reference population of n = 67 subjects was measured to enable the calculation of reference limits for all relevant steroidal Δ values. The applicability of the developed method was tested by means of a DHEA excretion study. Despite the fact that orally ingested DHEA is preferentially converted into sulphated metabolites and that the renal clearance of sulphated steroids is slow, only the 13C/12C ratio of EpiA demonstrated the potential to prolong the detection time for DHEA misuse. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The present study describes a novel approach for utilizing liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) in qualitative screening analysis. An LC/TOFMS method was developed for screening toxicologically relevant substances in urine samples. After solid phase extraction and LC separation, the method included full spectrum acquisition followed by automatic internal calibration, searching against a target library, and reporting positive identifications. The target library, containing 433 toxicologically relevant substances in the mass range of 105-734 Da, was created simply by entering the elemental formulas of substances into the instrument software for the calculation of their respective monoisotopic masses. In addition to parent drugs, the library contained selected urinary drug metabolites, based on their structures available in the literature. Identification was based on the exact masses of the compounds. The LC/TOFMS method provided 5-10 ppm mass accuracy for a majority of identified compounds in authentic urine samples. Compared with established thin-layer and gas chromatographic methods, the LC/TOFMS method produced similar findings in urine with the additional advantage of metabolite identification without actual reference substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号