首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The electronic (absorption spectra) and electrochemical properties of a novel series of triphenylpyridinium (H(3)TP(+)=A) electron-acceptor-based polyad species have been correlated with their steady-state (emission spectra) and time-resolved (ns and ps laser flash photolysis) photophysical behavior (at both 293 and 77 K). These d(6) transition metal complexes (M=Ru(II), Os(II)) of 2,2':6',2"-terpyridines (tpy) are denoted as P0 and P1, depending on whether they incorporate H(3)TP(+)-tpy or H(3)TP(+)-ptpy ligands (ptpy=4'-phenyl-substituted tpy), respectively. For the P0/Ru-based compounds, the luminescence quantum yield and excited-state lifetime of the "[Ru(tpy)(2)](2+)" chromophore have been found to be considerably enhanced at 293 K (e.g., tau=0.56 ns for isolated P0/Ru in acetonitrile vs tau=55 and 27 ns for P0/Ru within P0 A/Ru and P0 A(2)/Ru (A=electron acceptor), respectively). In spite of the lack of conjugation between P0 and A, this behavior has been ascribed to a through-bond mediated electronic substituent effect originating from the directly connected H(3)TP(+) electron-withdrawing group. For the P1-based compounds, the possibility of photoinduced electron-transfer (PET) processes with the formation of charge-separated (CS) states is discussed, and the main results may be summarized as follows: 1) when involved, the electron-donor D (D=Me(2)N of Me(2)N-ptpy) is strongly electronically coupled to P1 but cannot facilitate a reductive quenching of *P1 to give the *[D(+)-P1(-)]-type of CS state for thermodynamic reasons, irrespective of whether M is Ru(II) or Os(II); 2) the P1 and A components have been shown to be very weakly electronically coupled; 3) at 293 K, P1/Ru- and P1/Os-based polyad systems display distinct photophysical behavior with respect to A, with only the latter exhibiting a noticeable quenching of luminescence (up to 50 % for P1 A/Os with respect to P1/Os); 4) for assemblies made up of P1/Os and A components only, comparison between their room-temperature (RT) and low-temperature (LT; 77 K, frozen matrix) photophysical properties, together with information gleaned from combined transient absorption experiments and spectroelectrochemical studies of P1/Os and P1 A/Os, further supported by thermodynamic considerations, allowed us to conclude that a PET process does take place within the P1 A/Os dyad leading to the *[P1(+)-A(-)] CS state. For the DP1 A/Os triad, the formation of such a CS state followed by an enhanced electron-releasing inductive effect from D is postulated.  相似文献   

2.
A series of new manganese(I) and ruthenium(II) monometallic and bimetallic complexes made of 2,2′-bipyridine and 1,10-phenanthroline ligands, [Mn(CO)3(NN)(4,4′-bpy)]+, [{(CO)3(NN)Mn}2(4,4′-bpy)]2+ and [(CO)3(NN)Mn(4,4′-bpy)Ru(NN)2Cl]2+ (NN = 2,2′-bipyridine, 1,10-phenanthroline; 4,4′-bpy = 4,4′-bipyridine) are synthesized and characterized, in addition to already known ruthenium(II) complexes [Ru(NN)2Cl(4,4′-bpy)]+ and [Cl(NN)2Ru(4,4′-bpy)Ru(NN)2Cl]2+. The electrochemical properties show that there is a weak interaction between two metal centers in Mn–Ru heterobimetallic complexes. The photophysical behavior of all the complexes is studied. The Mn(I) monometallic and homobimetallic complexes have no detectable emission. In Mn–Ru heterobimetallic complexes, the attachment of Mn(I) with Ru(II) provides interesting photophysical properties.  相似文献   

3.
A theoretical analysis, based on density functional theory, has been carried out to study photoinduced processes within a recently experimentally characterized (Lainé, P. P.; Bedioui, F.; Loiseau, F.; Chiorboli, C.; Campagna, S. J. Am. Chem. Soc. 2006, http://dx.doi.org/10.1021/ja058357w.) series of Os(II) bis-tpy complexes (tpy = 2,2':6'2' '-terpyridine) functionalized by 2,4,6-triarylpyridinium groups, TP+. These dyad systems, designed to produce a charge-separated state (CSS) upon light excitation, are made up of a photosensitizer unit (P, the metal complex) and a tunable acceptor unit (A, the TP+). A full ab initio characterization of the electronic and structural properties of the lowest-lying triplet excited states, as well as of the CSS, allowed for a complete rationalization of the photoinduced processes taking place within the dyads. Among salient insights, theory allowed (i) substantiation of the inner P structural planarization as the relaxation mode of the MLCT states, (ii) confirmation of the existence of a ligand-centered triplet excited state (3LC) shown to essentially involve the nitro substituent of A (TP+-NO2) and lying very close in energy to the P-centered 3MLCT state, and (iii) a demonstration that the energy of the 3LC level is independent of intercomponent tilt angle (theta1). On this basis, the occurrence of a reversible electronic energy transfer between the 3MLCT and the 3LC states could be substantiated and shown to depend on the intramolecular conformation represented by theta1, which actually governs their electronic coupling (essentially via the degree of intercomponent conjugation). These computational issues were checked against experimental data already available and the results of a specifically undertaken photophysical study. Finally, CSS formation has been confirmed by studying the spin density patterns of reduced nitro-derivatized dyads. Taken together, these findings accurately account for the different excited-state behaviors of the dyads as a function of the level of structural restriction of their intercomponent conformation (and related amplitude for torsional fluctuations), thus providing theoretical evidence of conformationally gated photoinduced electron- and energy-transfer processes.  相似文献   

4.
The synthesis, characterization, and electrochemical, photophysical, and photochemical properties of the binuclear compounds [(Ru(H8-bpy)2)2((Metr)2Pz)](PF6)2 (1) and [(Ru(D8-bpy)2)2((Metr)2Pz)](PF6)2 (2), where bpy is 2,2'-bipyridine and H2(Metr)2Pz is the planar ligand 2,5-bis(5'-methyl-4'H-[1,2,4]triaz-3'-yl)pyrazine, are reported. Electrochemical and spectro-electrochemical investigations indicate that the ground-state interaction between each metal center is predominantly electrostatic and in the mixed-valence form only a low level of ground-state delocalization is present. Resonance Raman, transient, and time-resolved spectroscopies enable a detailed assignment to be made of the excited-state photophysical properties of the complexes. Deuteriation is employed to both facilitate spectroscopic characterization and investigate the nature of the lowest excited states.  相似文献   

5.
The syntheses, physical, and photophysical properties of a family of complexes having the general formula [M2(L)(mcb)(Ru(4,4'-(X)2-bpy)2)](PF6)3 (where M = Mn(II) or Zn(II), X = CH3 or CF3, mcb is 4'-methyl-4-carboxy-2,2'-bipyridine, and L is a Schiff base macrocycle derived from 2,6-diformyl-4-methylphenol and bis(2-aminoethyl)-N-methylamine) are described. The isostructural molecules all consist of dinuclear metal cores covalently linked to a Ru(II) polypyridyl complex. Photoexcitation of [Mn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (4) in deoxygenated CH2Cl2 solution results in emission characteristic of the 3MLCT excited state of the Ru(II) chromophore but with a lifetime (tau(obs) = 5.0 +/- 0.1 ns) and radiative quantum yield (Phi(r) approximately 7 x 10(-4)) that are significantly attenuated relative to the Zn(II) model complex [Zn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (6) (tau(obs) = 730 +/- 30 ns and Phi(r) = 0.024, respectively). Quenching of the 3MLCT excited state is even more extensive in the case of [Mn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (3), whose measured lifetime (tau(obs) = 45 +/- 5 ps) is >10(4) shorter than the corresponding model complex [Zn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (5) (tau(obs) = 1.31 +/- 0.05 micros). Time-resolved absorption measurements on both Mn-containing complexes at room-temperature revealed kinetics that were independent of probe wavelength; no spectroscopic signatures for electron-transfer photoproducts were observed. Time-resolved emission data for complex 4 acquired in CH2Cl2 solution over a range of 200-300 K could be fit to an expression of the form k(nr) = k0 + A x exp{-DeltaE/kB T} with k0 = 1.065 +/- 0.05 x 10(7) s(-1), A = 3.7 +/- 0.5 x 10(10) s(-1), and DeltaE = 1230 +/- 30 cm(-1). Assuming an electron-transfer mechanism, the variable-temperature data on complex 4 would require a reorganization energy of lambda approximately 0.4-0.5 eV which is too small to be associated with charge separation in this system. This result coupled with the lack of enhanced emission at temperatures below the glass-to-fluid transition of the solvent and the absence of visible absorption features associated with the Mn(II)2 core allows for a definitive assignment of Dexter transfer as the dominant excited-state reaction pathway. A similar conclusion was reached for complex 3 based in part on the smaller driving force for electron transfer (DeltaG0(ET) = -0.1 eV), the increase in probability of Dexter transfer due to the closer proximity of the donor excited state to the dimanganese acceptor, and a lack of emission from the compound upon formation of an optical glass at 80 K. Electronic coupling constants for Dexter transfer were determined to be approximately 10 cm(-1) and approximately 0.15 cm(-1) in complexes 3 and 4, respectively, indicating that the change in spatial localization of the excited state from the bridge (complex 3) to the periphery of the chromophore (complex 4) results in a decrease in electronic coupling to the dimanganese core of nearly 2 orders of magnitude. In addition to providing insight into the influence of donor/acceptor proximity on exchange energy transfer, this study underscores the utility of variable-temperature measurements in cases where Dexter and electron-transfer mechanisms can lead to indistinguishable spectroscopic observables.  相似文献   

6.
The supramolecular systems [Ru(Pyr(n)bpy)(CN)(4)](2-) (n = 1, 2), where one and two pyrenyl units are linked via two-methylene bridges to the [Ru(bpy)(CN)(4)](2-) chromophore, have been synthesized. The photophysical properties of these systems, which contain a highly solvatochromic metal complex moiety, have been investigated in water, methanol, and acetonitrile. In all solvents, prompt and efficient singlet-singlet energy transfer takes places from the pyrene to the inorganic moiety. Energy transfer at the triplet level, on the other hand, is dramatically solvent dependent. In water, the metal-to-ligand charge transfer (MLCT) emission of the Ru-based chromophore is completely quenched, and rapid (200 ps for n = 1) irreversible triplet energy transfer to the pyrene units is detected in ultrafast spectroscopy. In acetonitrile, the MLCT emission is practically unaffected by the presence of the pyrenyl chromophore, implying the absence of any intercomponent triplet energy transfer. In methanol, triplet energy transfer leads to an equilibrium between the excited chromophores, with considerable elongation of the MLCT lifetime. The investigation of the [Ru(Pyr(n)bpy)(CN)(4)](2-) systems in methanol provided a very detailed and self-consistent picture: (i) The initially formed MLCT state relaxes toward equilibrium in 0.5-1.3 ns (n = 1, 2), as monitored both by ultrafast transient absorption and by time-correlated single photon counting. (ii) The two excited chromophores decay with a common lifetime of 260-450 ns (n = 1, 2), as determined from the decay of MLCT emission (slow component) and of the pyrene triplet absorption. (iii) These equilibrium lifetimes are fully consistent with the excited-state partition of 12-6% MLCT (n = 1-2), independently measured from preexponential factors of the emission decay. Altogether, the results demonstrate how site-specific solvent effects can be used to control the direction of intercomponent energy flow in bichromophoric systems.  相似文献   

7.
[(ttpy)Os(tpy-ph-TPH(3)(+))](3+) (2), [(ttpy)Os(tpy-xy-TPH(3)(+))](3+) (3), [(ttpy)Os(tpy-ph-TPH(2)(NO(2))(+))](3+) (4), and [(ttpy)Os(tpy-xy-TPH(2)(NO(2))(+))](3+) (5) are a series of dyads made of an Os(II) bis-tpy complex (tpy = 2,2':6',2"-terpyridine) as the photosensitizer (P) and 2,4,6-triarylpyridinium group (TP(+)) as the electron acceptor (A). These dyads were designed to form charge-separated states (CSS) upon light excitation. Together with analogous Ru(II) complexes (7-10), they have been synthesized and fully characterized. We describe herein how intramolecular photoinduced processes are affected when the electron-accepting strength of A (by nitro-derivatization of TP(+)) and/or the steric hindrance about intercomponent linkage (by replacing a phenyl spacer by a xylyl one) are changed. Electronic absorption and electrochemical behavior revealed that (i) chemical substitution of TP(+) (i.e., TP(+)-NO(2)) has no sizable influence on P-centered electronic features, (ii) reduction processes located on TP(+) depend on the intercomponent tilt angle. Concerning excited-state properties, photophysical investigation evidenced that phosphorescence of P is actually quenched in dyads 4 and 5 only. Ultrafast transient absorption (TA) experiments allowed attributing the quenching in conformationally locked dyad 5 to oxidative electron transfer (ET) from the (3)MLCT level to the TP(+)-NO(2) acceptor (k(el) = 1.1 x 10(9) s(-)(1)). For 4, geometrically unlocked, the (3)MLCT state was shown to first rapidly equilibrate (reversible energy transfer; k(eq) approximately 2 x 10(9) s(-)(1)) with a ligand centered triplet state before undergoing CSS formation. Thus, the pivotal role of conformation in driving excited-state decay pathways is demonstrated. Also, inner P structural planarization as a relaxation mode of the (3)MLCT states has been inferred from TA experiments.  相似文献   

8.
A model of the iron hydrogenase active site with the structure [(mu-ADT)Fe2(CO)6] (ADT = azadithiolate (S-CH2-NR-CH2-S), (2: R = 4-bromophenyl, 3: R = 4-iodophenyl)) has been assembled and covalently linked to a [Ru(terpy)2]2+ photosensitizer. This trinuclear complex 1 represents one synthetic step toward the realization of our concept of light-driven proton reduction. A rigid phenylacetylene tether has been incorporated as the linking unit in 1 in order to prolong the lifetime of the otherwise short-lived [Ru(terpy)2]2+ excited state. The success of this strategy is demonstrated by comparison of the photophysical properties of 1 and of two related ruthenium complexes bearing acetylenic terpyridine ligands, with those of [Ru(terpy)2]2+. IR and electrochemical studies reveal that the nitrogen heteroatom of the ADT bridge has a marked influence on the electronic properties of the [Fe2(CO)6] core. Using the Rehm-Weller equation, the driving force for an electron transfer from the photoexcited *[Ru(terpy)2]2+ to the diiron site in 1 was calculated to be uphill by 0.59 eV. During the construction of the trinuclear complex 1, n-propylamine has been identified as a decarbonylation agent on the [(mu-ADT)Fe2(CO)6] portion of the supermolecule. Following this procedure, the first azadithiolate-bridged dinuclear iron complex coordinated by a phosphine ligand [(mu-ADT)Fe2(CO)5PPh3] (4, R = 4-bromophenyl) was synthesized.  相似文献   

9.
The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)(2)(Cpp-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(Cpp-L-PNA-OH)](2+) (M2), and [Ru(dppz)(2)(Cpp-L-PNA-OH)](2+) (M3) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH(2) (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2) (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3') showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (T(m)) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.  相似文献   

10.
New dinuclear asymmetric ruthenium complexes of the type [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+/5+) (bpy = 2,2'-bipyridine; 5-CNphen = 5-cyano-1,10-phenanthroline) have been synthesized and characterized by spectroscopic, electrochemical, and photophysical techniques. The structure of the cation [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+) has been determined by X-ray diffraction. The mononuclear precursor [Ru(bpy)(2)(5-CNphen)](2+) has also been prepared and studied; while its properties as a photosensitizer are similar to those of [Ru(bpy)(3)](2+), its luminescence at room temperature is quenched by a factor of 5 in the mixed-valent species [(bpy)(2)Ru(II)(5-CNphen)Ru(III)(NH(3))(5)](5+), pointing to the occurrence of intramolecular electron-transfer processes that follow light excitation. From spectral data for the metal-to-metal charge-transfer transition Ru(II) --> Ru(III) in this latter complex, a slight electronic interaction (H(AB) = 190 cm(-1)) is disclosed between both metallic centers through the bridging 5-CNphen.  相似文献   

11.
The spectroscopic and photophysical properties of zeolite-Y-entrapped [Ru(bpy)3]2+ co-doped with either [Fe(bpy)3]2+ or [Fe(tpy)2]2+ over a range of iron complex loadings are presented. In solution, [Ru(bpy)3]2+ undergoes efficient bimolecular energy transfer to [Fe(bpy)3]2+, whereas only radiative or trivial energy transfer occurs between [Ru(bpy)3]2+ and [Fe(tpy)2]2+. In sharp contrast, within zeolite Y, both [Fe(bpy)3]2+ and [Fe(tpy)2]2+ were found to effectively quench the donor emission. Fitting the Perrin model to the photophysical data yields an effective quenching radius of 32 and 27 A, respectively, for [Fe(bpy)3]2+ and [Fe(tpy)2]2+. The long-range nature of the quenching suggests F?rster energy transfer. Detailed spectroscopic investigations indicate that [Fe(tpy)2]2+ bound within zeolite Y undergoes significant distortion from octahedral geometry. This distortion results in increased oscillator strength and enhanced spectral overlap, between the [Ru(bpy)3]2+ (3)d pi-pi* donor emission and the co-incident acceptor (1)T2-(1)A1 ligand field absorption compared with solution. This turns on an efficient energy transfer to [Fe(tpy)2]2+ within the confinement of the zeolite Y supercage. Overall, this is an interesting example of the ability of the zeolite environment to provoke new photophysical processes not possible in solution.  相似文献   

12.
Lo KK  Lee TK 《Inorganic chemistry》2004,43(17):5275-5282
Two luminescent ruthenium(II) polypyridine complexes containing a biotin moiety [Ru(bpy)(2)(L1)](PF(6))(2) (1) and [Ru(bpy)(2)(L2)](PF(6))(2) (2) (bpy = 2,2'-bipyridine; L1 = 4-(N-((2-biotinamido)ethyl)amido)-4'-methyl-2,2'-bipyridine; L2 = 4-(N-((6-biotinamido)hexyl)amido)-4'-methyl-2,2'-bipyridine) have been synthesized and characterized, and their photophysical and electrochemical properties have been studied. Upon photoexcitation, complexes 1 and 2 display intense and long-lived triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ru) --> pi*(L1 or L2)) emission in fluid solutions at 298 K and in low-temperature glass. We have studied the binding of these ruthenium(II) biotin complexes to avidin by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, competitive assays using native biotin, and quenching experiments using methyl viologen. On the basis of the results of these experiments, a homogeneous competitive assay for biotin has been investigated.  相似文献   

13.
Novel ruthenium(II) complexes, fac/mer-[Ru(MeCO-5Bpy-R)3]2+ (H-5Bpy-OH = 5'-amino-2,2'-bipyridine-5-carboxylic acid; R = -NHtBu, -NH(cHex), -N(cHex)2), have been synthesized. The fac and mer isomers have been successfully separated using HPLC techniques, and their photophysical/electrochemical properties have been investigated. In the absorption and emission spectra of fac/mer-[Ru(MeCO-5Bpy-R)3]2+ with secondary amines (R = -N(cHex)2) in acetonitrile at room temperature, the maximum wavelengths based on the MLCT are longer than those for the amide derivatives with primary amines (R = -NHtBu, -NH(cHex)). A small solvent effect on the photophysical properties between fac- and mer-[Ru(MeCO-5Bpy-NHtBu)3]2+ has been observed. The excitation polarization spectra, giving P values reflecting the relation between the absorption and the emission oscillators, for the fac- and mer-ruthenium(II) complexes (C3 and C1 symmetry, respectively) have been measured for the first time. Almost no difference in the excitation polarization spectra between the fac and mer complexes is found, and these spectra are similar to that for [Ru(bpy)3]2+ with D3 symmetry. This finding suggests that the orientations of the absorption and emission oscillators, in the case of the ruthenium(II) tris(2,2'-bipyridine) derivatives, would not be affected by the symmetries of the complexes and that the P values for any derivatives would be similar to that for [Ru(bpy)3]2+.  相似文献   

14.
A series of N-alkylated derivatives [RuL(2)][PF(6)](4) has been prepared from [Ru(pytpy)(2)][PF(6)](2) (N-alkyl substituent = 4-cyanobenzyl, 4-nitrobenzyl, ethyl, cyanomethyl, allyl, octyl). Solution NMR spectroscopic, electrochemical and photophysical properties are reported, along with the single crystal structure of [Ru(4)(2)][PF(6)](4)·H(2)O (4 = 4'-(4-(1-ethylpyridinio))-2,2':6',2'-terpyridine). Anion exchange leads to the water-soluble [RuL(2)][HSO(4)](4) salts (N-alkyl substituent = benzyl, 4-cyanobenzyl, 4-nitrobenzyl, ethyl, cyanomethyl, allyl, octyl) and the NMR spectroscopic signatures of pairs of hexafluoridophosphate and hydrogensulfate salts are compared. The change in anion has little effect on the energies of absorptions in the electronic spectra, although for all complexes, decreases in extinction coefficients are observed. The emission spectra and lifetimes for the hexafluoridophosphate and hydrogensulfate salts show similar trends; all exhibit an emission close to 720-730 nm (λ(ex) = 510 nm). For a given ligand, L, the emission lifetime decreases on going from [RuL(2)][PF(6)](4) to [RuL(2)][HSO(4)](4). However, trends are the same for both salts, i.e. the longest lived emitters are observed for N-ethyl, N-octyl and N-benzyl derivatives, and the shortest lived emitters are those containing cyano or nitro groups. Significantly, in the absorption spectra of the complexes, there is little variation in the energy of the MLCT band, suggesting that the character of the ligand orbital involved in the transition contains no character from the N-substituent. We have addressed this by carrying out a complementary DFT and TD-DFT study. Calculated absorption spectra predict a red shift in λ(max) on going from [Ru(pytpy)(2)](2+) to [RuL(2)](4+), and little variation in λ(max) within the series of [RuL(2)](4+) complexes; these results agree with experimental observations. Analysis of the compositions of the MOs involved in the MLCT transitions explain the experimental observations, showing that there is no contribution from orbitals on the N-alkyl substituents, consistent with the fact that the nature of the N-substituents has little influence on the energy of the MLCT band. The theoretical results also reveal satisfactory agreement between calculated and crystallographic data for [Ru(1)(2)](4+) (1 = 4'-(4-(1-benzylpyridinio))-2,2':6',2'-terpyridine) and [Ru(4)(2)](4+).  相似文献   

15.
合成了具有D-π-A型结构的含吡啶基的新型有机化合物4-[4-(2-吡啶基)苯乙烯基]-N,N-二正丁基苯胺,其结构经元素分析、UV和X射线衍射进行了表征。 利用单光子液体荧光光谱、单光子荧光量子产率、固体荧光光谱和荧光寿命探讨了它的光学性质。 该分子晶体属于三斜晶系,P-1空间群, 晶胞参数为:a=1.150 41(3) nm,b=1.457 46(4) nm,c=1.515 98(4) nm,Z=4,V=2.330 68(11) nm3,R1=0.096 2,wR2=0.263 0。 通过研究发现,目标化合物平面性好,分子为D-π-A型结构,分子间有C-H…π相互作用,使得它具有良好的光学性质。  相似文献   

16.
Cui Y  Mo HJ  Chen JC  Niu YL  Zhong YR  Zheng KC  Ye BH 《Inorganic chemistry》2007,46(16):6427-6436
A new anion sensor [Ru(bpy)2(H2biim)](PF6)2 (1) (bpy = 2,2'-bipyridine and H2biim = 2,2'-biimidazole) has been developed, in which the Ru(II)-bpy moiety acts as a chromophore and the H2biim ligand as an anion receptor via hydrogen bonding. A systematic investigation shows that 1 is an eligible sensor for various anions. It donates protons for hydrogen bonding to Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, and OAc- anions and further actualizes monoproton transfer to the OAc- anion, changing color from yellow to orange brown. The fluoride ion has a high affinity toward the N-H group of the H2biim ligand for proton transfer, rather than hydrogen bonding, because of the formation of the highly stable HF2- anion, resulting in stepwise deprotonation of the two N-H fragments. These processes are signaled by vivid color changes from yellow to orange brown and then to violet because of second-sphere donor-acceptor interactions between Ru(II)-H2biim and the anions. The significant color changes can be distinguished visually. The processes are not only determined by the basicity of anion but also by the strength of hydrogen bonding and the stability of the anion-receptor complexes. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of anion sensors.  相似文献   

17.
The rhenium(I) and ruthenium(II) complexes of a fullerene-substituted bipyridine ligand have been prepared. Electrochemical studies indicate that some ground state electronic interaction between the fullerene subunit and the metal-complexed moiety are present in the Re(I) but not the Ru(II) complex. The photophysical properties have been investigated by steady-state and time-resolved UV/Vis-NIR luminescence spectroscopy and nanosecond laser flash photolysis in CH2Cl2 solution, and compared to those of the corresponding model compounds. Excitation of the methanofullerene moiety in the dyads does not lead to excited state intercomponent interactions. Instead, excitation of the metal-complexed unit shows that the lowest triplet metal-to-ligand-charge-transfer excited state ((3)MLCT) centered on the Re(I)- or Ru(II)-type unit is quenched with a rate constant of about 2.5 x 10(8) s(-1). The quenching is attributed to an electron-transfer (ElT) process leading to the reduction of the carbon sphere, as determined by luminescence spectroscopy for the Ru(II) dyad. Experimental detection of electron transfer in the Re(I) dyad is prevented due to the unfavorable absorption of the metal-complexed moiety relative to the fullerene unit. However, it can be postulated on the basis of energetic/kinetic arguments and by comparison with the Ru(II)-type array. The primary ElT process is followed by charge-recombination to give the lowest-lying fullerene triplet excited state (3C60) with quantitative yield, as determined by sensitized singlet oxygen luminescence experiments. Direct (3)MLCT-->3C60 triplet-triplet energy-transfer (EnT) does not successfully compete with ElT since it is highly exoergonic and located in the Marcus inverted region. The quantum yield of singlet oxygen sensitization (Phi(delta)) of the Re(I)-based dyad is found to be lower (0.80) than for the corresponding Ru(II) derivative (1.0). This is likely to be the consequence of different conformational structures for the two dyads, rather than a different yield of 3C60 formation.  相似文献   

18.
Four luminescent ruthenium(II) polypyridine estradiol complexes [Ru(NwedgeN)2(bpy-estradiol)](PF6)2 (NwedgeN = 2,2'-bipyridine (bpy), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen); bpy-estradiol = 5-(4-(17alpha-ethynylestradiolyl)phenyl)-2,2'-bipyridine (bpy-ph-est), 4-(N-(6-(4-(17alpha-ethynylestradiolyl)benzoylamino)hexyl)aminomethyl)-4'-methyl-2,2'-bipyridine (mbpy-C6-est)) have been designed as new luminescent biological probes. The lipophilicity and photophysical and electrochemical properties of these complexes have been investigated. Upon photoexcitation, all the complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (dpi(Ru) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. The binding of the complexes to estrogen receptor-alpha (ERalpha) has been studied by emission titrations. The Ph2-phen complexes showed emission enhancement and increased lifetimes upon binding to the protein. Additionally, the cytotoxicity of the complexes toward the HeLa cell line has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and the IC50 values ranged from 83.1 to 166.6 microM (cisplatin showed an IC50 value of 34.3 microM under the same experimental conditions). Furthermore, the cellular uptake of the complexes has been investigated by flow cytometry and laser-scanning confocal microscopy.  相似文献   

19.
A new ligand p-[N-2-(2'-pyridyl)benzimidazolyl]-[N-2-(2'-pyridyl)indolyl]-benzene (L1) has been synthesized and fully characterized. L1 has two distinct chelating sites: one N,N-chelate site and one N,C-chelate site. This ligand has been found to be very effective in selective binding to two different metal ions. Two new heterobimetallic complexes Ru-Pt and Ru-Pd using L1 as the bridging ligand have been successfully synthesized and fully characterized. To understand the mutual influence of the two metal centers on electronic and photophysical properties, the corresponding monometallic Ru(II), Pt(II) and Pd(II) compounds have also been synthesized and investigated. All Ru(II)-containing complexes have been found to be luminescent. Electronic communication between the two different metal centers in the heterobimetallic compounds was found to be weak. The Pt(II) moiety appears to enhance the phosphorescent efficiency of the Ru(II) unit while the Pd(II) analogue has little influence.  相似文献   

20.
The synthesis, spectroscopic, electrochemical and photophysical characterization of a series of dinuclear ruthenium(II) complexes of the type [(bpy)2Ru(NnN)2RuCl(bpy)2](PF6)3, where NnN = 4,4′‐bipyridyl (N0N), 1,2‐bis(4‐pyridyl)ethylene (NEN), 1,2‐bis(4‐pyridyl)ethane (N2N), and 4,4′‐trimethylenedipyridine (N3N) are reported. The photophysical and electrochemical properties are discussed with particular emphasis on the ability of the bridging ligands to support intercomponent interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号