首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
New types of supported Pd membranes were developed for high temperature H2 separation. Sequential combinations of boehmite sol slip casting and film coating, and electroless plating (ELP) steps were designed to synthesize “Pd encapsulated” and “Pd nanopore” membranes supported on -Al2O3 hollow fibers. The permeation characteristics (flux, permselectivity) of a series of unaged and aged encapsulated and nanopore membranes with different Pd loadings were compared to those of a conventional 1 μm Pd/4 μm γ-Al2O3/-Al2O3 hollow fiber membrane. The unaged encapsulated membrane exhibited good performance with ideal H2/N2 separation factors of 3000–8000 and H2 flux 0.4 mol/m2 s at 370 °C and a transmembrane pressure gradient of 4 × 105 Pa. The unaged Pd nanopore membranes had a lower initial flux and permselectivity, but exhibited superior performance with extended use (200 h). At the same conditions the unaged 2.6 μm Pd nanopore membrane had a H2 flux of 0.16 mol/m2 s and separation factor of 500 and the unaged 0.6 μm Pd nanopore membrane had a H2 flux of 0.25 mol/m2 s and separation factor of 50. Both nanopore membranes stabilized after 40 h of operation, in contrast to a continued deterioration of the permselectivity for the other membranes. An analysis of the permeation data reveals a combination of Knudsen and convective transport through membrane defects. A phenomenological, qualitative model of the synthesis and resulting structure of the encapsulated and nanopore membranes is presented to explain the permeation results.  相似文献   

2.
Sol-gel polyimide-silica composite membrane: gas transport properties   总被引:2,自引:0,他引:2  
The effect of introduction of silica particles prepared by the sol-gel technique on the gas transport properties of a polyimide film was studied. The sorption and permeation of N2, O2, CO2, H2 and CH4 were studied and correlated with morphological changes in the polymer structure. From sorption isotherms, we observed that the composite membrane presents higher solubility coefficients than the polyimide one. The solubility coefficient ratio between the composite and the polyimide is about 1.5–2.0. The isotherms were analyzed in terms of the dual mode sorption. The Henry's coefficient and the Langmuir's affinity and saturation constants were obtained allowing to calculate the Langmuir to Henry concentration ratios as function of the gas pressure. These ratios decrease until zero within a certain pressure range as long as the Langmuir's mode is acting and they are higher for the polyimide membrane when compared with the composite one. This study was completed with calorimetric measurements during the sorption. The gas interaction energy in kJ/mol decreases within the same pressure range as previously described. The measured energies are higher for the polyimide film when compared with the composite one because the polyimide membrane presents a stronger energetic effect caused by a higher Langmuir's contribution. From permeation studies at 3.155 Pa, the composite membrane showed higher permeability coefficients and permselectivities than the polyimide one. All these results were explained, taking into account the difference on the imidization degree of both membranes and the morphological changes which may be induced by the silica nodules in the organic/inorganic interphases.  相似文献   

3.
By a method of laser firing, a high zirconia containing (70%) composite membrane on porous ceramic tubing was successfully fabricated. The laser sintered composite membrane was characterized by gas separation/permeation experiments. In the separation experiment of a CO2---CH4 gaseous mixture, it was found that the separation factor of CH4 over CO2 was 1.15. In the pure gases permeation experiment, it was found that Knudsen diffusion is considered to be predominant in the permeation mechanism for pure gases H2, He, CH4, N2, O2, and CO2, and the permeation mechanism of H2O at lower temperature depends mainly on surface diffusion and on Knudsen diffusion at higher temperature.  相似文献   

4.
We have determined the effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) 50/50 copolyimide dense film and fabricated high performance hollow fiber membranes of the copolyimide for CO2/CH4 separation. The hollow fiber membranes were wet-spun from a tertiary solution containing 6FDA-Durene/mPDA (PI), N-methyl-pyrrolidone (NMP) and tetrahydrofuran (THF) with a weight ratio of 20:50:30 at different shear rates within the spinneret. We observed the following facts: (1) the CO2/CH4 selectivity of the copolyimide dense film decreased significantly with an increase in temperature; (2) the performance of as-spun fibers was obviously influenced by the shear rate during spinning. For uncoated fibers, permeances of CH4 and CO2 decreased with increasing shear rate, while selectivity of CO2/CH4 sharply increased with shear rate until the shear rate reached 2169 s−1 and then the selectivity leveled off; (3) After silicone rubber coating, permeances of CH4 and CO2 decreased, the selectivity of CO2/CH4 was recovered to the inherent selectivity of its dense film. Both the permeances and selectivity with increasing shear rate followed their same trends as that before the coating; (4) there was an optimal shear rate at which a defect-free fiber with a selectivity of CO2/CH4 at 42.9 and permeance of CO2 at 53.3 GPU could be obtained after the coating; and (5) the pressure durability of the resultant hollow fiber membranes could reach 1000 psia at room temperature.  相似文献   

5.
采用高温“一步法”缩聚合成了一系列含叔丁基的可溶性芳香聚酰亚胺树脂, 然后通过溶液浇注法制得相应均质薄膜, 并对其气体分离性能进行了测试, 同时研究了二酐结构和温度对聚酰亚胺均质膜气体分离性能的影响. 结果表明, 对于H2, N2, O2, CO2和CH4 等5种气体, 含叔丁基聚酰亚胺均质膜不仅表现出良好的透气性, 而且具有较高的气体透过选择性, 4,4'-(六氟异丙烯)二酞酸酐(6FDA)和均苯四甲酸二酐(PMDA)两类聚酰亚胺均质膜的气体分离性能最佳. 除CO2外, 这两类聚酰亚胺均质膜的气体渗透系数随温度升高而升高, 而所有测试气体在这两种均质膜中的扩散系数和溶解度系数均随温度升高而增大.  相似文献   

6.
The synthesis, characterization, and gas permeability of 10 new polyphosphazenes has been studied. Additionally, the first gas permeation data has been collected on hydrolytically unstable poly[bis-(chloro)phosphazene]. Gases used in this study include CO2, CH4, O2, N2, H2, and Ar. CO2 was the most permeable gas through any of the phosphazenes and a direct correlation between the Tg of the polymer and CO2 transport was noted with permeability increasing with decreasing polymer Tg. To a lesser degree, permeability of all the other gases studied also yielded increases with decreasing polymer Tg. The trend observed for these new polymers was further supported by published data for other phosphazenes. Furthermore, permeability data for all gases were found to correlate to the gas condensability and the gas critical pressures, except for hydrogen, suggesting that the nature of the gas is also a significant factor for permeation through rubbery phosphazene membranes. Ideal separation factors () for the CO2/H2 and CO2/CH4 gas pairs were calculated. For CO2/CH4, no increase in was observed with decreasing Tg, however increases in were noted for the CO2/H2 pair.  相似文献   

7.
Polyurethane (PU) and polyurethane–poly(methylmethacrylate) (PMMA) blend membranes were used in gas separation studies. The effects of blend composition, temperature, and pressure on the permeability, diffusivity, and solubility of CO2, H2, O2, CH4, and N2 were investigated. The separation factors of some gas pairs were also evaluated. Positron annihilation lifetime spectroscopy was applied to assess free volume changes as a function of blend composition and temperature. Free volume size increases by approximately 30% with increasing temperature from 10 to 40 °C for all blends studied. The permeability of all gases decreases by approximately 55% with the addition of 30 wt% of PMMA. The permeation process is governed by diffusion, except that of CO2. In relation to the behavior of gas transport as a function of temperature, some important observations are (i) CO2 presents the lowest permeation activation energy value (28 kJ/mol), and (ii) gas pair selectivity increases at low temperatures and is high for gas pairs that present differences in permeation activation energies as high as 15 kJ/mol for the CO2/CH4 gas pair. Furthermore, the study with pressure variations shows that: (i) at elevated pressure, the PU and the blend membrane permeability to CO2 and H2 increases by approximately 35%, and (ii) oxygen-to-nitrogen selectivity increases with pressure as a consequence of the decrease in the permeability to nitrogen in the case of the 30%-PMMA blend.  相似文献   

8.
采用二次生长法在多孔α-Al2O3载体上制备MFI型(ZSM-5和silicate-1)分子筛膜;通过XRD和SEM检测,证明所合成的分子筛膜为致密、交联和无取向的MFI型分子筛膜,厚度为5 μm;单组分气体渗透实验检测中,所制备样品膜的N2渗透量均小于10-11 mol/(m2·s·Pa),可认为其无缺陷;同时,考察了样品分子筛膜对H2S/CH4混合气的分离效果,在渗透压分别为0.3和0.5 MPa时,silicate-1分子筛膜的H2S/CH4的分离因子分别为1.99和4.44,而ZSM-5分子筛膜的CH4/H2S的分离因子分别为6.71和12.85。  相似文献   

9.
Microporous carbon membranes were prepared on an -alumina support by a pyrolysis of cationic tertiary amine/anionic polymer composites. The precursor solutions contain a thermosetting resorcinol/formaldehyde (RF) polymer and a cationic tertiary amine. Three types of cationic tertiary amines with different chain lengths were used, such as tetramethlammonium bromide (TMAB), tetrapropylammonium bromide (TPAB) and cetyltrimethylammonium bromide (CTAB). A porous structure was produced by a decomposition of the amine and the resulting pores assisted the further gasification of the RF polymer at high temperature. The carbon/alumina membranes have thin and continuous carbon top layers with a thickness of 1 μm. Gas permeation tests were performed using single gases of CO2, O2, N2, CF4, n-C4H10 and i-C4H10, as well as binary mixtures of CH4/n-C4H10 and N2/CF4 at different temperatures between 23 and 150 °C. The carbon membrane prepared using TMAB showed separation factors higher than 650 for the CH4/n-C4H10 mixtures and higher than 8100 for the N2/CF4 mixture. From the permeation of pure gases with different molecular sizes, the pore sizes of the carbon membrane prepared using TMAB, TPAB and CTAB are estimated to be 4.0, 5.0 and larger than 5.5 Å, respectively, indicating that the micropore size of the carbon membranes is controllable by using different amines.  相似文献   

10.
Zirconia bio-ceramic hollow fiber membranes were developed using a sequence of mixing, extrusion, phase inversion and sintering steps. ZrO2 partially stabilized by Y2O3 was chosen as the starting membrane material. The prepared membranes were characterized by SEM, EDX, XRD and gas permeation techniques. Effects of the starting ZrO2 particle size and sintering temperature on the physical properties of the resulted hollow fiber membranes were extensively studied. Sintered at 1400 °C for 10 h, membranes made from 80 nm sized ZrO2 particles display cubic fluorite as the major crystalline phase and give rise to interesting microstructure for cell response. Without any surface modification, this tailor-made membrane with high mechanical strength and pore size less than 1 μm was selected for further test of osteoblast attachment. In vitro bio-compatibility was evaluated by using mouse MC-3T3-E1 osteoblast cell culture. A series of cell interactions with fiber surface (i.e. cell adhesion, proliferation, formation of bone nodules, mineralization, etc.) verified the bio-compatibility of the prepared membranes.  相似文献   

11.
Supported carbon molecular sieve membranes based on a phenolic resin   总被引:7,自引:0,他引:7  
The preparation of a composite carbon membrane for separation of gas mixtures is described. The membrane is formed by a thin microporous carbon layer (thickness, 2 μm) obtained by pyrolysis of a phenolic resin film supported over a macroporous carbon substrate (pore size, 1 μm; porosity, 30%). The microporous carbon layer exhibits molecular sieving properties and it allows the separation of gases depending on their molecular size. The micropore size was estimated to be around 4.2 Å. Single and mixed gas permeation experiments were performed at different temperatures between 25°C and 150°C, and pressures between 1 and 3.5 bar. The carbon membrane shows high selectivities for the separation of permanent gases like O2/N2 system (selectivity≈10 at 25°C). Gas mixtures like CO2/N2 and CO2/CH4 are successfully separated by means of prepared membranes. For example, the membrane prepared by carbonization at 700°C shows at 25°C the following separation factors: CO2/N2≈45 and CO2/CH4≈160.  相似文献   

12.
Polyallylamine (PAAm) was synthesized by free radical polymerization and characterized by Fourier transform infrared resonance (FT-IR) spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy and differential scanning calorimetry (DSC). The composite membranes were prepared by using PAAm–poly(vinyl alcohol) (PVA) blend polymer as the separation layer and polysulfone (PSF) ultrafiltration membranes as the support layer. The surface and cross-section morphology of the membrane was inspected by environmental scanning electron microscopy (ESEM). The gas transport property of the membranes, including gas permeance, flux and selectivity, were investigated by using pure CO2, N2, CH4 gases and CO2/N2 gas mixture (20 vol% CO2 and 80 vol% N2) and CO2/CH4 gas mixture (10 vol% CO2 and 90 vol% CH4). The plots of gas permeance or flux versus feed gas pressure imply that CO2 permeation through the membranes follows facilitated transport mechanism whereas N2 and CH4 permeation follows solution–diffusion mechanism. Effect of PAAm content in the separation layer on gas transport property was investigated by measuring the membranes with 0–50 wt% PAAm content. With increasing PAAm content, gas permeance increases initially, reaches a maximum, and then decreases gradually. For CO2/N2 gas mixture, the membranes with 10 wt% PAAm content show the highest CO2 permeance of about 1.80 × 10−5 cm3 (STP) cm−2 s−1 KPa−1 and CO2/N2 selectivity of 80 at 0.1 MPa feed gas pressure. For CO2/CH4 gas mixture, the membranes with 20 wt% PAAm content display the highest CO2 permeance of about 1.95 × 10−5 cm3 (STP) cm−2 s−1 KPa−1 and CO2/CH4 selectivity of 58 at 0.1 MPa feed gas pressure. In order to explore the possible reason of gas permeance varying with PAAm content, the crystallinity of PVA and PAAm–PVA blend polymers was measured by X-ray diffraction (XRD) spectra. The experimental results show an inverse relationship between crystallinity and gas permeance, e.g., a minimum crystallinity and a maximum CO2 permeance are obtained at 20 wt% PAAm content, indicating that the possibility of increasing CO2 permeance with PAAm content due to the increase of carrier concentration could be weakened by the increase of crystallinity.  相似文献   

13.
The permeation rates of He, H2, CO2, N2 and O2, are reported for a series of miscible polysulfone-polyimide (PSF-PI) blend membranes synthesized in our laboratory. For gases which do not interact with the polymer matrix (such as He, H2, N2 and O2), gas permeabilities in the miscible blends vary monotonically between those of the pure polymers and can be described by simple mixture equations. In the case of CO2, which interacts with PI, blend permeabilities decrease somewhat, compared to pure PSF and PI. This, however, is accompanied by a two-fold improvement in the critical pressures of plasticization vs. polyimide. Permselectivities of CO2/N2 and H2/CO2 in the blends deviate from mixing theory predictions, in contrast to selectivities of gas pairs which do not interact with PI. Differential scanning calorimetry measurements of pure and PSF/PI blend membranes show one unique glass transition temperature, supporting the miscible character of the PSF/PI mixture. Optical micrographs of the blend membranes clearly indicate perfect homogenization and no phase separation. Frequency shifts and absorption intensity changes in the FTIR spectra of the blends, as compared with those of the pure polymers, indicate mixing at the molecular level. This compatibility in mixing PSF and PI, results essentially in a new blend polymer material, suitable for the preparation of gas separation membranes. Such membranes combine satisfactory gas permeation properties, reduced cost, advanced resistance to harsh chemical and temperature environments, and improved tolerance to plasticizing gases.  相似文献   

14.
Two types of poly(phenylene oxide) (PPO) membranes were prepared: one by chemical modification through sulfonation using chlorosulfonic acid and another by physical incorporation with a heteropolyacid (HPA), viz., phosphotungstic acid. These membranes were tested for the separation of CO2/CH4 mixtures. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction techniques were used to confirm the modified structure of PPO as well as to understand its interactions with gaseous molecules. Scanning electron microscopy (SEM) was used to investigate the membrane morphology. Thermal stability of the modified polymers was assessed by differential scanning calorimetry (DSC), while the tensile strength was measured to evaluate their mechanical stability. Both chemical and physical modifications did not adversely affect the thermally and mechanical stabilities. Experiments with pure CO2 and CH4 gases showed that CO2 selectivity (27.2) for SPPO increased by a factor of 2.2, while the PPO–HPA membrane exhibited 1.7 times increase in selectivity with a reasonable permeability of 28.2 Barrer. An increase in flux was observed for the binary CO2/CH4 mixture permeation with an increasing feed concentration (5–40 mol%) of CO2. An enhancement in feed pressure from 5 to 40 kg/cm2 resulted in reduced CO2 permeability and selectivity due to the competitive sorption of methane. Both the modified PPO membranes were found to be promising for enrichment of methane despite exhibiting lower permeability values than the pristine PPO membrane.  相似文献   

15.
A defect-free as-spun hollow fiber membrane with an ultra-thin dense-selective layer is the most desirable configuration in gas separation because it may potentially eliminate post-treatments such as silicone rubber costing, simplify membrane manufacture, and reduce production costs. However, the formation of defect-free as-spun hollow fiber membranes with an ultra-thin dense-selective layer is an extremely challenging task because of the complexity of phase inversion process during the hollow fiber fabrication and the trade-off between the formation of an ultra-thin dense-selective layer and the generation of defects. We have for the first time successfully produced defect-free as-spun Torlon® hollow fiber membranes with an ultra-thin dense layer of around 540 Å from only a one polymer/one solvent binary system at reasonable take-up speeds of 10–50 m/min. The best O2/N2 permselectivity achieved is much higher than the intrinsic value of Torlon® dense films. This is also a pioneering work systematically studying the effects of spinneret dimension and hollow fiber dimension on gas separation performance. Several interesting and important phenomena have been discovered and never been reported: (1) as the spinneret dimension increases, a higher elongation draw ratio is required to produce defect-free hollow fiber membranes; (2) the bigger the spinneret dimension, the higher the selectivity; (3) the bigger the spinneret dimension, the thinner the dense-selective layer. Mechanisms to explain the above observation have been elaborated. The keys to produce hollow fiber with enhanced permselectivity are to (1) remove die swell effects, (2) achieve finer monodisperse interstitial chain space at the dense-selective layer by an optimal draw ratio, and (3) control membrane formation by varying spinneret dimension.  相似文献   

16.
A thin, gas-tight palladium (Pd) membrane was prepared by the counter-diffusion chemical vapor deposition (CVD) process employing palladium chloride (PdCl2) vapor and H2 as Pd precursors. A disk-shaped, two-layer porous ceramic membrane consisting of a fine-pore γ-Al2O3 top layer and a coarse-pore -Al2O3 substrate was used as Pd membrane support. A 0.5–1 μm thick metallic membrane was deposited in the γ-Al2O3 top layer very close to its surface, as verified by XRD and SEM with a backscattered electron detector. The most important parameters that affected the CVD process were reaction temperature, reactants concentrations and top layer quality. Deposition of Pd in the γ-Al2O3 top layer resulted in a 100- to 1000-fold reduction in He permeance of the porous substrate. The H2 permeation flux of these membranes was in the range 0.5–1.0 × 10−6 mol m−2 s−1 Pa−1 at 350–450°C. The H2 permeation data suggest that surface reaction steps are rate-limiting for H2 transport through such thin membranes in the temperature range studied.  相似文献   

17.
In this study, we focused on the shear stress effects within a spinneret during hollow fiber spinning on the formation of the hollow fibers and their gas transport properties. We fabricated asymmetric polyimide hollow fibers with a completely defect-free thin skin layer using a dry/wet phase inversion process. The apparent calculated skin layer thickness of the hollow fiber was 280 nm and the O2 permeance was 2.9×10−5 cm3 (STP)/(cm2 s cmHg). Interestingly, the skin layer thickness was reduced at the high shear rate. In addition, the gas permeances and selectivities of the hollow fibers increased with the increasing shear rate. We concluded that the oriented skin layer of the hollow fiber induced by shear stress had a significant influence on the formation of the skin layer and its gas transport properties. From the ATR-IR spectra results, it was clear that the surface skin layer of the hollow fiber was parallel oriented.  相似文献   

18.
Permeability (P) of Cl2, O2, N2 and H2 was measured in polydimethylsiloxane (PDMS) composite membranes with two different degrees of cross-linking. The permeability was measured in the low pressure range (1–3 bar absolute) over a fairly large temperature range 35–120°C. The functionalities of the membranes were compared on the basis of permeation rate and ability to separate the gases Cl2–O2. These results are part of an extensive survey where perfluorinated and carbon membranes are also included (not reported here). The purpose of the project is to develop an industrial membrane with high permselectivity for either O2 or Cl2 (depending on the type of membrane) at temperatures preferably above 70°C. Process conditions are set in an industrial project. The PDMS membranes are good candidates for this separation, having a high permeation rate for Cl2 and a selectivity of Cl2/O2 in the range of 8–25 depending on temperature. Durability of the PDMS membranes in this aggressive environment is found to be very dependent on process conditions and on how the material is polymerized and cured. For documentation of durability, various silicones were tested; these results are to be reported separately.  相似文献   

19.
Mixed matrix membranes (MMMs) have received worldwide attention for natural gas purification due to their superior performance in terms of permeability and selectivity. The zeolitic imidazole framework-8 (ZIF-8) blended polysulfone (PSf) membranes have been fabricated for natural gas purification. ZIF-8 was selected due to its low cost, remarkable thermal and chemical stabilities, and tunable microporous structure. The neat PSf hollow fiber membrane and mixed matrix hollow fiber membranes incorporated with the various ZIF-8 loadings up to 1.25% were fabricated. The prepared membranes were evaluated using field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and gas separation performance. The low loading of ZIF-8 nanoparticles to the MMM improved thermal stability and glass transition temperature and yielded low surface roughness. MMMs were tested using pure gases with a significant improvement of 36% in CO2 permeability and 28% in CO2/CH4 selectivity compared to the neat membrane. However, the high ZIF-8 loading reduced the separation performances. Moreover, CO2/CH4 selectivity decreased at elevated pressure (8 and 10 bar) due to CO2-induced plasticization. Previously, the incorporation of ZIF-8 particles has primarily been subjected to the fabrication of flat sheet membranes, whereas this work focused on hollow fiber membranes which are rarely investigated. Hence, the promising results obtained at low feed pressure in this study demonstrated the potential of ZIF-8 based hollow fiber membrane for natural gas purification.  相似文献   

20.
孙成珍  白博峰 《物理化学学报》2018,34(10):1136-1143
二维石墨烯纳米孔中气体分子的选择性渗透对多孔石墨烯分离膜非常重要。本文采用分子动力学方法研究了气体分子在氮氢修饰石墨烯纳米孔中的渗透特性,从分子的大小和结构、纳米孔的构型以及分子与石墨烯之间的作用强度等角度阐明了分子出现选择性渗透的原因。结果表明,不同分子的渗透率不同,即H2O>H2S>CO2>N2>CH4。渗透率跟分子的质量和直径以及分子在石墨烯表面上的吸附密度有关;根据气体分子动理学理论,渗透率跟分子质量成反比关系;而分子在石墨烯表面上的高吸附密度对渗透起促进作用。对于H2O和CH4分子,分子直径起主导作用;H2O分子直径最小,其渗透率最大;同理,CH4分子的渗透率最小。对于H2S和CO2分子,H2S分子的直径较大,但其与石墨烯之间的作用强度较大(吸附密度较高),导致渗透率较高;对于CO2和N2分子,CO2分子的直径较小,并且与石墨烯之间的作用强度较大,渗透率较高。同时发现,分子在纳米孔中的渗透使得其在石墨烯表面的密度分布极不均匀。纳米孔左右两侧的功能化氮原子使CH4分子容易从孔两侧区域穿过,而其它分子由于直径较小在纳米孔中心区域穿过的概率最大。分子与石墨烯之间的作用越强,导致分子在石墨烯表面区域内停留的时间越长,最终使其在渗透纳米孔的过程中所经历的时间越长。本文所采用的氮氢修饰石墨烯纳米孔中,分子渗透速率达到~10-3 mol·s-1·m-2·Pa-1,并且其它分子相对于CH4分子的选择性也很高,说明基于该类型纳米孔的多孔石墨烯分离膜在天然气处理等工业气体分离领域具有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号