首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Low energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy and line of sight mass spectrometry have been used to study the adsorption and desorption of dimethyldisulfide (DMDS) on Au(111). At 300 K adsorption is dissociative, forming a chemisorbed adlayer of methylthiolate with a 1/3 ML, (sq rt 3 x sq rt 3)R30 degrees, structure. At 100 K adsorption is molecular, with dissociation to form the 1/3 ML (sq rt 3 x sq rt 3)R30 degrees methylthiolate structure occurring at 138-160 K. A physisorbed DMDS layer, with a coverage of 1/6 ML of DMDS, forms on top of the (sq rt 3 x sq rt 3)R30 degrees chemisorbed MT surface for T < or = 180 K, with multilayers forming for T < or = 150 K. In temperature programmed desorption, multilayers of DMDS desorbed with zero order kinetics and an activation energy of 41 kJ mol(-1); the physisorbed layer desorbed with first order kinetics, exhibiting repulsive lateral interactions with an activation energy which varied from 63 kJ mol(-1) (theta = 0) to 51 kJ mol(-1) (theta = 1); the chemisorbed methylthiolate layer desorbed associatively as DMDS via the physisorbed layer, the activation energy for the reaction, 2 methylthiolate --> physisorbed DMDS, exhibiting repulsive lateral interactions with an activation energy which varied from 65 kJ mol(-1) (theta = 0) to 61 kJ mol(-1) (theta = 1). The physisorbed disulfide layer explains the pre-cursor state adsorption kinetics observed in sticking probability measurement, while its relatively facile formation provides a mechanism by which thiolate self-assembled monolayers can become mobile at room temperature.  相似文献   

2.
The RISM-SCF and polarizable continuum model (PCM) approaches have been applied to study the conformational equilibrium of 1,2-dichloroethane (DCE) in water. Both the electron correlation effect and basis sets play an important role in the relative energies of the gauche and trans conformers in gas and solution phases. Both PCM and RISM-MP2 methods resulted in a consistent trend with the previous experimental and theoretical studies that the population of the gauche conformer increases in going from the gas phase to the aqueous solution. However, the PCM treatment could not describe the solvent effect completely in that the sign of the relative free energy of the gauche and trans forms is opposite to the most recent experimental and theoretical data, while the RISM-MP2 gives the right sign in the free energy difference. We found that the larger excess chemical potential gain (by ca. -4.1 kcal/mol) for the gauche conformer is large enough to result in the gauche preference of DCE in water, though it has to compensate for more solute reorganization energy (approximately 1.6 kcal/mol) and overcome the energy difference (approximately 1.6 kcal/mol) in the gas phase. The radial distribution functions between DCE and the nearest water shows that the electrostatic repulsion between chlorine and oxygen atoms is higher in the trans conformer than in the gauche one, while the attractive interaction between chlorine and hydrogen of water is higher in the gauche conformer.  相似文献   

3.
Temperature-programmed reaction/desorption, mass spectrometry, reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and density functional theory calculations have been employed to explore the reaction and bonding structure of 1,2-C(2)H(4)Br(2) on Cu(100). Both the trans and gauche conformers are found to dissociate by breaking the C-Br bonds on clean Cu(100) at 115 K, forming C(2)H(4) and Br atoms. Theoretical investigations for the possible paths of 1,2-C(2)H(4)Br(2) → C(2)H(4) + 2Br on Cu(100) suggest that the barriers of the trans and gauche molecules are in the ranges of 0-4.2 and 0-6.5 kcal/mol, respectively. The C-Br scission temperature of C(2)H(4)Br(2) is much lower than that (~170 K) of C(2)H(5)Br on Cu(100). Adsorbed Br atoms can decrease the dissociation rate of the 1,2-C(2)H(4)Br(2) molecules impinging the surface. The 1,2-C(2)H(4)Br(2) molecules adsorbed in the first monolayer are structurally distorted. Both the trans and gauche molecules exist in the second monolayer, but with no preferential adsorption orientation. However, the trans molecule is the predominant species in the third or higher layer formed at 115 K. The layer structure is not thermally stable. Upon heating the surface to 150 K, the orientation of the trans 1,2-C(2)H(4)Br(2) molecules in the layer changes, leading to the rotation of the BrCCBr skeletal plane toward the surface normal on average and the considerable growth of the CH(2) scissoring peak. On oxygen-precovered Cu(100), decomposition of 1,2-C(2)H(4)Br(2) to form C(2)H(4) is hampered and no oxygenated hydrocarbons are formed. The presence of the oxygen atoms also increases the adsorption energy of the second-layer molecules.  相似文献   

4.
The ?-X electronic absorption spectrum of propargyl peroxy radical has been recorded at room temperature by cavity ring-down spectroscopy. Electronic structure calculations predict two isomeric forms, acetylenic and allenic, with two stable conformers for each. The acetylenic trans conformer, with a band origin at 7631.8 ± 0.1 cm(-1), is definitively assigned on the basis of ab initio calculations and rotational simulations, and possible assignments for the acetylenic gauche and allenic trans forms are given. A fourth form, allenic cis, is not observed. Simulations based on calculated torsional potentials predict that the allenic trans form will have a long, poorly resolved progression in the OOCC torsional vibration, consistent with experimental observations.  相似文献   

5.
Rate coefficients have been measured for electron attachment to oxalyl chloride [ClC(O)C(O)Cl] and oxalyl bromide [BrC(O)C(O)Br] in He gas at 133 Pa pressure over the temperature range of 300-550 K. With oxalyl chloride, the major ion product of attachment is Cl2(-) at all temperatures (66% at 300 K); its importance increases slightly as temperature increases. Two other product ions formed are Cl- (18% at 300 K) and the phosgene anion CCl2O- (16% at 300 K) and appear to arise from a common mechanism. With oxalyl bromide, the Br2(-) channel represents almost half of the ion product of attachment, independent of temperature. Br- accounts for the remainder. For oxalyl chloride, the attachment rate coefficient is small [(1.8 +/- 0.5) x 10(-8) cm3 s(-1) at 300 K], and increases with temperature. The attachment rate coefficient for oxalyl bromide [(1.3 +/- 0.4) x 10(-7) cm3 s(-1) at 300 K] is nearly collisional and increases only slightly with temperature. Stable parent anions C2Cl2O2(-) and C2Br2O2(-) and adduct anions Cl- (C2Cl2O2) and Br- (C2Br3O2) were observed but are not primary attachment products. G2 and G3 theories were applied to determine geometries of products and energetics of the electron attachment and ion-molecule reactions studied. Electron attachment to both oxalyl halide molecules leads to a shorter C-C bond and longer C-Cl bond in the anions formed. Trans and gauche conformers of the neutral and anionic oxalyl halide species have similar energies and are more stable than the cis conformer, which lies 100-200 meV higher in energy. For C2Cl2O2, C2Cl2O2(-), and C2Br2O2(-), the trans conformer is the most stable conformation. The calculations are ambiguous as to the oxalyl bromide geometry (trans or gauche), the result depending on the theoretical method and basis set. The cis conformers for C2Cl2O2 and C2Br2O2 are transition states. In contrast, the cis conformers of the anionic oxalyl halide molecules are stable, lying 131 meV above trans-C2Cl2O2(-) and 179 meV above trans-C2Br2O2(-). Chien et al. [J. Phys. Chem. A 103, 7918 (1999)] and Kim et al. [J. Chem. Phys. 122, 234313 (2005)] found that the potential energy surface for rotation about the C-C bond in C2Cl2O2 is "extremely flat." Our computational data indicate that the analogous torsional surfaces for C2Br2O2, C2Cl2O2(-), and C2Br2O2(-) are similarly flat. The electron affinity of oxalyl chloride, oxalyl bromide, and phosgene were calculated to be 1.91 eV (G3), and 2.00 eV (G2), and 1.17 eV (G3), respectively.  相似文献   

6.
Pure chlorocarbonyl trifluoromethanesulfonate, ClC(O)OSO(2)CF(3), has been prepared in about 58% yield by the ambient-temperature reaction between ClC(O)SCl and AgCF(3)SO(3). The conformational properties of the gaseous molecule have been studied by vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. ClC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [ClC(O) group trans with respect to the CF(3) group] and gauche conformers, with the trans form being the more abundant [66(8)% from IR(matrix) measurements]. In both conformers, the C=O bond of the ClC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.8(2) kcal mol(-1) (IR), is slightly smaller than the calculated value (1.0-1.5 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/n, a = 7.3951(9) angstroms, b = 24.897(3) angstroms, c = 7.4812(9) angstroms, beta = 99.448(2) degrees, Z = 8] consists surprisingly of both trans and gauche forms. Whereas the more stable conformer for the more or less discrete molecules and the polarization effects would tend to favor the trans form, the packing effects would stabilize the gauche rotamer in the solid state.  相似文献   

7.
This paper addresses the surface modification of TiO2 nanoparticles with n-(6-aminohexyl)aminopropyltrimethoxysilane (AHAPS) using various initial aminosilane concentrations. The main objective of this article is to show experimentally the importance of the physisorption during the grafting process. The distinction between chemisorbed and physisorbed aminosilane molecules on TiO2 is thoroughly analyzed. The surface of bare and modified TiO2 particles has been characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to gain a better understanding of the adsorption mechanism of AHAPS on TiO2. Quantitative information on surface energy of TiO2, in terms of adsorption energy sites and heterogeneity, has been investigated by quasi-equilibrium low-pressure adsorption technique using nitrogen and argon as probe molecules. The FTIR and XPS data are combined to estimate and discuss the chemisorbed and physisorbed contribution. The results demonstrate that both physisorption and chemisorption occurs but they display a different behavior. The physisorbed amounts are much higher than the chemisorbed amounts. This shows that the main part of the adsorbed layer is composed of physisorbed molecules. The physisorbed uptake depends highly on the AHAPS concentration while the chemisorbed amount remains constant. Quasi-equilibrium Ar derivative adsorption isotherms reveal that the AHAPS molecules are mostly located on the {101} and {001} faces of titania and that the two faces display the same reactivity toward AHAPS sorption. Nitrogen adsorption experiments show that the sorption takes place on the three polar surface sites of high energy. The molecules are chemisorbed onto the site displaying the highest energy while they are physisorbed on the two lower energy sites.  相似文献   

8.
Structural relaxation in amorphous 1,2-dichloroethane (DCE) samples prepared by vapor deposition on cold substrates were studied by Raman scattering. The gauche and trans molecules of DCE were found to coexist in amorphous states immediately after the deposition, and structural relaxation occurred with temperature elevation before crystallization. Mole fraction of the gauche isomer increased during this relaxation process, although trans is the stable isomer in gaseous and crystalline states. At the final amorphous stage immediately before crystallization, the gauche mole fraction was close to the mole fraction of the supercooled liquid state. It was also found that trans molecules located at positions with lower density were more easily transformed into the gauche conformation, while the distribution of the local structure around the resultant gauche molecules remained almost unchanged during the structural relaxation. Such behaviors of amorphous DCE are discussed from the viewpoint of the characteristic molecular structure of DCE.  相似文献   

9.
A set of supported ruthenium complexes with systematically varied ratios of chemisorbed to physisorbed species was formed by contacting cis‐[Ru(acac)2(C2H4)2] ( I ; acac=C5H7O2?) with dealuminated zeolite Y. Extended X‐ray absorption fine structure (EXAFS) spectra used to characterize the samples confirmed the systematic variation in the loadings of the two supported species and demonstrated that removal of bidentate acac ligands from I accompanied chemisorption to form [Ru(acac)(C2H4)2]+ attached through two Ru? O bonds to the Al sites of the zeolite. A high degree of uniformity in the chemisorbed species was demonstrated by sharp bands in the infrared (IR) spectrum characteristic of ruthenium dicarbonyls that formed when CO reacted with the anchored complex. When the ruthenium loading exceeded 1.0 wt % (Ru/Al≈1:6), the additional adsorbed species were simply physisorbed. Ethene ligands on the chemisorbed species reacted to form butenes when the temperature was raised to approximately 393 K; acac ligands remained bonded to Ru. In contrast, ethene ligands on the physisorbed complex simply desorbed under the same conditions. The chemisorption activated the ruthenium complex and facilitated dimerization of the ethene, which occurred catalytically. IR and EXAFS spectra of the supported samples indicate that 1) Ru centers in the chemisorbed species are more electron deficient than those in the physisorbed species and 2) Ru–ethene bonds in the chemisorbed species are less symmetric than those in the physisorbed species, which implies the presence of a preferred configuration for the catalytic dimerization.  相似文献   

10.
We have investigated the molecular geometry and dipole moment distribution for the major conformational states of 1,2-dichloroethane (DCE) in three different solvents under ambient conditions using the Car-Parrinello mixed quantum mechanics/molecular mechanics method. The solvents studied were water, DCE, and chloroform. Within the time scale investigated, we find a conformational equilibrium existing between the gauche and trans forms of DCE in all three solvents. In the chloroform solvent, the conformational transition occurs more frequently than in water solvent and in liquid DCE (i.e., DCE solute in DCE solvent). The population of gauche conformer is more in the case of water solvent, while the trans conformer dominates in chloroform solvent. We report a bimodal nature of the dipole moment distribution for DCE in all three solute-solvents studied, where the peaks are attributed to the trans and gauche conformational states. The dipole moments of both of the conformational states increase with increasing polarity of the solvent. Also, with an increase in solvent polarity, an increase in the C-Cl bond length and magnitude of atomic charges in DCE has been observed. The increase in atomic charges of DCE is almost twice when the solvent is changed from chloroform to water.  相似文献   

11.
The preparation and anaerobic ultraviolet photolysis of trimethyl acetate (TMA) on rutile TiO(2)(110) have been examined with an emphasis on reaction paths. Substrates for photolysis were prepared by dosing trimethyl acetic acid at 100, 300, and 550 K. The chemistry was characterized by mass spectrometry during dosing and by H(2)O adsorption and temperature programmed desorption (TPD) after dosing. Using TPD after photolysis and mass spectrometry during photolysis, the products ejected and retained during photolysis were sought. The photolysis results are interpreted using the following mechanistic model. Photons with energies exceeding 3 eV create electron-hole pairs in the substrate. With probabilities of 10(-5) or lower, the holes initiate TMA chemistry by extracting an electron from the pi orbital of the carboxylate moiety. The accompanying electrons are trapped at the surface and inhibit subsequent events of this chemistry. The electron-deficient intermediate, TMA, decarboxylates to form CO(2) and either chemisorbed tert-butyl (-C(CH(3))(3)) or physisorbed i-butene. For photolysis at 100 or 200 K, the -C(CH(3))(3) accumulates and there is a slow photon-driven secondary reaction that, with a source of H, hydrogenates adsorbed tert-butyl to physisorbed i-butane. For photolysis at 300 K, -C(CH(3))(3) thermally reacts to form and desorb i-butene and i-butane during photolysis.  相似文献   

12.
1,2-Dichloroethane (DCE) was loaded into diamond anvil cells and compressed up to 30 GPa at room temperature. Pressure-induced transformations were probed using Raman spectroscopy. At pressures below 0.6 GPa, fluid DCE exists in two conformations, gauche and trans in equilibrium, which is shifted to gauche on compression. DCE transforms to a solid phase with exclusive trans conformation upon further compression. All the characteristic Raman shifts remain constant in fluid phase and move to higher frequencies in the solid phase with increasing pressure. At about 4-5 GPa, DCE transforms from a possible disordered phase into a crystalline phase as evidenced by the observation of several lattice modes and peak narrowing. At 8-9 GPa, dramatic changes in Raman patterns of DCE were observed. The splitting of the C-C-Cl bending mode at 325 cm-1, together with the observation of inactive internal mode at 684 cm-1 as well as new lattice modes indicates another pressure-induced phase transformation. All Raman modes exhibit significant changes in pressure dependence at the transformation pressure. The new phase remains crystalline, but likely with a lower symmetry. The observed transformations are reversible in the entire pressure region upon decompression.  相似文献   

13.
Both stable conformers, trans (T) and gauche (G), of the ethyl peroxy radical and its perdeutero analogue have been observed via cavity ringdown spectroscopy (CRDS) of the A2A'-X2A' ' electronic transition in the near-IR. Assignments of specific spectral lines to the electronic transition origin (T00), to observed vibrational hot bands, and to the COO bend and the O-O stretch vibrations are given with the help of equation of motion (EOMIP) quantum chemical calculations. In particular, spectral information for the previously unknown/unassigned T conformer of ethyl peroxy is given in this study for the first time and compared to the data for the previously observed G conformer. The conformer assignment is confirmed by an analysis of the partially resolved rotational structures. The electronic origins for the T and G conformers of C2H5O2 are located at 7362(1) and 7592(1) cm-1, respectively.  相似文献   

14.
The gauche and trans rotamers of halogeno(halogenomethyl)silane (XSiH2CH2X; X = F, Cl, Br, I), fluoro(halogenomethyl)silane and halogeno(fluoromethyl)silane (SiH2F–CH2Y and SiH2Y–CH2F; Y = Cl, Br, I) have been studied in the gas phase using theoretical methods. The transition state arising from gauche-trans isomerization has also been modeled. The methods used are density functional theory (DFT) and second-order M?ller–Plesset theory (MP2). B3LYP is the functional used for the DFT method. The basis set used is 6-311++G(d,p) for all atoms except that 6-311G(d,p) is used for the iodine atom only. The results indicate that the trans conformers are preferred in the gas phase and both energy difference and rotational barrier height increase as the size of the halogen increases. This study has been extended to include the solvent effect with the dielectric constant of the solvents varying from 2 to 80. The solvent effect was explored using Self-Consistent Reaction Field and the conformers have been fully optimized at the DFT/B3LYP level of theory. The net effect of a solvent is that energy difference decreases but the rotational barrier is not much affected. The findings from this work are explained in terms of different interactions and these are supported by a Natural Bond Orbital analysis.  相似文献   

15.
用密度泛函方法BHandHIYP以6-311 G(d)和6-311 G(2df)为基组对草酰溴的一价正离子(BrCO)2^ 和中性分子(BrCO)2做了构象分析,结果表明,(BrCO)^ 2和(BrCO)2都具有平面反式和交叉式两种构象。交叉式构象存在超共轭现象。此外,对草酰溴离子、中性分子各解离通道初级反应的Gibbs自由能的计算,发现草酰溴离子C-C键解离通道的反应活性总体上大于中性分子,对该反应通道进一步做了反应机理研究,证实了热力学结论。  相似文献   

16.
Pure fluorocarbonyl trifluoromethanesulfonate, FC(O)OSO(2)CF(3), is prepared in about 70% yield by the ambient-temperature reaction between FC(O)SCl and AgCF(3)SO(3). The geometric structure and conformational properties of the gaseous molecule have been studied by gas electron diffraction (GED), vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF, MP2, and B3LYP with 6-311G basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. FC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [FC(O) group trans with respect to the CF(3) group] and gauche conformers with the trans form prevailing [67(8)% from GED and 59(5)% from IR(matrix) measurements]. In both conformers the C=O bond of the FC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.49(13) kcal mol(-1) (GED) and 0.22(12) kcal mol(-1) (IR), is slightly smaller than the calculated value (0.74-0.94 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/c, a = 10.983(1) A, b = 6.4613(6) A, c = 8.8508(8) A, beta = 104.786(2) degrees ] consists exclusively of the trans conformer.  相似文献   

17.
It is well known that the molecules of 1,2-dihaloethanes [1], 1-halopropanes [2] and 1,2-dihalopropanes [3] exist in more than one rotational isomeric form trans (T) and gauche (G) in the liquid state and only in the trans (T) form in the crystalline state at low temperature. In the case of 1,3-dihalopropanes [4], however, the molecules exist in dynamic equilibrium of three types of rotameric forms, TT, TG and GG in the liquid phase, while GG is the only stable form in the crystalline phase. The number of rotational conformers present in 1,2-ethanedithiol [5], 1-propanethiol [6] and 1,2-propanedithiol [7] and their stabilities in the liquid and crystalline solid phases are observed to be similar to those of the corresponding haloalkanes [1–3]. Since such studies with 1,3-dimercaptopropane have not yet been made, its infrared spectrum in the liquid state and its Raman spectra in the liquid and solid states have been investigated. The present communication reports the results and their analyses with reference to the possibility of rotational isomerism in the molecule.  相似文献   

18.
Structural and conformational properties of two sulfenyl derivatives, trifluoromethanesulfenyl acetate, CF3S-OC(O)CH3 (1), and trifluoromethanesulfenyl trifluoroacetate, CF3S-OC(O)CF3 (2), were determined by gas electron diffraction, vibrational spectroscopy, in particular with IR (matrix) spectroscopy, which includes photochemical studies, and by quantum chemical calculations. Both compounds exist in the gas phase as a mixture of two conformers, with the prevailing component possessing a gauche structure around the S-O bond. The minor form, 15(5)% in 1 and 11(5)% in 2 according to IR(matrix) spectra, possesses an unexpected trans structure around the S-O bond. The C=O bond of the acetyl group is oriented syn with respect to the S-O bond in both conformers. UV-visible broad band irradiation of 1 and 2 isolated in inert gas matrixes causes various changes to occur. Conformational randomization clearly takes place in 2 with simultaneous formation of CF3SCF3. For 1 the only reaction channel detected leads to the formation of CH3SCF3 with the consequent extrusion of CO2. Quantum chemical calculations (B3LYP/6-31G and MP2 with 6-31G and 6-311G(2df,pd) basis sets) confirm the existence of a stable trans conformer. The calculations reproduce the conformational properties for both compounds qualitatively correct with the exception of the B3LYP method for compound 2 which predicts the trans form to be prevailing, in contrast to the experiment.  相似文献   

19.
The Raman spectra (3200-30 cm(-1)) of liquid and solid, and infrared spectra of gaseous and solid chloromethyl silyl dichloride, ClCH2SiHCl2, have been recorded. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference was determined to be 363 +/- 40 cm(-1) (4.34 +/- 0.48 kJ mol(-1)), with the more stable form being the gauche conformer, which is consistent with the prediction from ab initio calculations at both the Hartree-Fock level and with full electron correlation by the perturbation method to second order. It is estimated that 92% of the sample is in the gauche form at ambient temperature. A complete vibrational assignment is proposed for the gauche conformer and several of fundamentals of the trans conformer based on infrared band contours, relative intensities, depolarization values, and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from the ab initio MP2/6-31G(d) calculations. The r0 SiH bond distances of 1.476 and 1.472 A have been obtained for the trans and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. The optimized geometries have also been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method up to MP2/6-311 + G(2d,2p). The results are discussed and compared to some corresponding results for several related molecules.  相似文献   

20.
We report the photon-stimulated desorption of negative ions induced by direct dipolar dissociation and dissociative electron attachment. The photon-stimulated desorption of F(-) ions from CF(3)Cl physisorbed on a Si(111)-7x7 surface at 30 K in the photon energy range 12-35 eV was studied. The F(-) ion yield exhibits four resonances, at 12.8, 16.2, 19.5, and 22.3 eV, quite unlike the gas phase photodissociation cross section. The intensities of these resonances depend strongly on the CF(3)Cl coverage in a manner which varies from peak to peak. The resonances at 19.5 and 22.3 eV, which have a significant enhancement in the monolayer regime, are due to electron mediated dipolar dissociation of adsorbed CF(3)Cl molecules. The enhancement is attributed to surface electron attachment following molecular excitation. A significant enhancement in the monolayer regime has also been observed for the resonances at 12.8 and 16.2 eV. These two resonances are ascribable to a combination of electron mediated dipolar dissociation and dissociative electron attachment driven by photoelectrons generated in the neighboring molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号