首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The adsorption of acetic acid on a proton-ordered water ice surface is modeled using periodic plane-waves density-functional theory. The structures of acetic acid adsorbed as a monomer or oligomers, hydrated or not, are calculated through gradient optimization. The resulting quantum electronic density of states are compared to metastable impact electron spectroscopy (MIES) results and lead to selection of the most plausible structures of acetic acid on water ice. Hypotheses are formulated for the structure of the acid film growing on the ice surface including mainly cyclic dimers and hydrated forms. Adsorptions of single water molecules on acetic acid crystal surfaces are also studied after optimization of the acetic acid crystal bulk and surface structure. More comparisons with spectroscopic studies are proposed in the accompanying paper.  相似文献   

2.
The adsorption of gaseous acetic acid (CH(3)C(O)OH) on thin ice films and on ice doped with nitric acid (1.96 and 7.69 wt %) was investigated over upper troposphere and lower stratosphere (UT/LS) temperatures (198-208 K), and at low gas concentrations. Experiments were performed in a Knudsen flow reactor coupled to a quadrupole mass spectrometer. The initial uptake coefficients, γ(0), on thin ice films or HNO(3)-doped ice films were measured at low surface coverage. In all cases, γ(0) showed an inverse temperature dependence, and for pure thin ice films, it was given by the expression γ(0)(T) = (4.73 ± 1.13) × 10(-17) exp[(6496 ± 1798)/T]; the quoted errors are the 2σ precision of the linear fit, and the estimated systematic uncertainties are included in the pre-exponential factor. The inverse temperature dependence suggests that the adsorption process occurs via the formation of an intermediate precursor state. Uptakes were well represented by the Langmuir adsorption model, and the saturation surface coverage, N(max), on pure thin ice films was (2.11 ± 0.16) × 10(14) molecules cm(-2), independent of temperature in the range 198-206 K. Light nitration (1.96 and 7.69 wt %) of ice films resulted in more efficient CH(3)C(O)OH uptakes and larger N(max) values that may be attributed to in-bulk diffusion or change in nature of the gas-ice surface interaction. Finally, it was estimated that the rate of adsorption of acetic acid on high-density cirrus clouds in the UT/LS is fast, and this is reflected in the short atmospheric lifetimes (2-8 min) of acetic acid; however, the extent of this uptake is minor resulting in at most a 5% removal of acetic acid in UT/LS cirrus clouds.  相似文献   

3.
The physical adsorption of formic (HC(O)OH) and acetic (CH(3)C(O)OH) acid on ice was measured as a function of concentration and temperature. At low concentrations, the gas-ice interaction could be analysed by applying Langmuir adsorption isotherms to determine temperature dependent partition constants, K(Lang). Using temperature independent saturation coverages (N(max)) of (2.2 +/- 0.5) x 10(14) molecule cm(-2) and (2.4 +/- 0.6) x 10(14) molecule cm(-2) for HC(O)OH and CH(3)C(O)OH, respectively, we derive K(Lang)(HC(O)OH) = 1.54 x 10(-24) exp (6150/T) and K(Lang)(CH(3)C(O)OH) = 6.55 x 10(-25) exp (6610/T) cm(3) molecule(-1). Via a van't Hoff analysis, adsorption enthalpies were obtained for HC(O)OH and CH(3)C(O)OH. Experiments in which both acids or HC(O)OH and methanol interacted with the ice surface simultaneously were adequately described by competitive adsorption kinetics. The results are compared to previous measurements and used to calculate the equilibrium partitioning of these trace gases to ice surfaces under conditions relevant to the atmosphere.  相似文献   

4.
The rate and thermodynamics of the adsorption of acetone on ice surfaces have been studied in the temperature range T = 190-220 K using a coated-wall flow tube reactor (CWFT) coupled with QMS detection. Ice films of 75 +/- 25 microm thickness were prepared by coating the reactor using a calibrated flow of water vapor. The rate coefficients for adsorption and desorption as well as adsorption isotherms have been derived from temporal profiles of the gas phase concentration at the exit of the flow reactor together with a kinetic model that has recently been developed in our group to simulate reversible adsorption in CWFTs (Behr, P.; Terziyski, A.; Zellner, R. Z. Phys. Chem. 2004, 218, 1307-1327). It is found that acetone adsorption is entirely reversible; the adsorption capacity, however, depends on temperature and decreases with the age of the ice film. The aging effect is most pronounced at low acetone gas-phase concentrations (< or = 2.0 x 10(11) molecules/cm(3)) and at low temperatures. Under these conditions, acetone is initially adsorbed with a high rate and high surface coverage that, upon aging, both become lower. This effect is explained by the existence of initially two adsorption sites (1) and (2), which differ in nature and number density and for which the relative fractions change with time. Using two-site dynamic modeling, the rate coefficients for adsorption (k(ads)) and desorption (k(des)) as well as the Langmuir constant (K(L)) and the maximum number of adsorption sites (c(s,max)), as obtained for the adsorption of acetone on sites of types (1) and (2) in the respective temperature range, are k(ads)(1) = 3.8 x 10(-14) T(0.5) cm(3) s(-1), k(des)(1) = 4.0 x 10(11) exp(-5773/T) s(-1), K(L) (1) = 6.3 x 10(-25) exp(5893/T) cm(3), c(s,max)(1) < or = 10(14) cm(-2) and k(ads)(2) = 2.9 x 10(-15) T(0.5) cm(3) s(-1), k(des)(2) = 1.5 x 10(7) exp(-3488/T) s(-1), K(L)(2) = 5.0 x 10(-22) exp(3849/T) cm(3), c(s,max)(2) = 6.0 x 10(14) cm(-2), respectively. On the basis of these results, the adsorption of acetone on aged ice occurs exclusively on sites of type (2). Among the possible explanations for the time-dependent two-site adsorption behavior, i.e., crystallographic differences, molecular or engraved microstructures, or a mixture of the two, we tentatively accept the former, i.e., that the two adsorption sites correspond to cubic (1, I(c)) and hexagonal (2, I(h)) sites. The temporal change of I(c) to I(h) and, hence, the time constants of aging are consistent with independent information in the literature on these phase changes.  相似文献   

5.
Vibrational sum frequency spectroscopy has been used to investigate the surface of aqueous acetic acid solutions. By studying the methyl and carbonyl vibrations with different polarization combinations, an orientation analysis of the acetic acid molecules has been performed in the concentration range 0-100%. The surface tension of acetic acid solutions was also measured in order to obtain the surface concentration. The orientation of the interfacial acetic acid molecules was found to remain essentially constant in an upright position with the methyl group directed toward the gas phase in the whole concentration range. The tilt angle (theta(CH)3) of the symmetry axis of the methyl group with respect to the surface normal was found to be lower than 15 degrees when considering a delta distribution of angles or as narrow as 0 +/- 11 degrees when assuming a Gaussian distribution. Further investigations showed that the C=O bond tilt (theta(C)(=)(O)) of the acetic acid hydrated monomer was constant and close to 55 degrees in the concentration range where it was detected. Finally, the orientation information is discussed in terms of different species of acetic acid, where the formation of a surface layer of acetic acid cyclic dimers is proposed at high acid concentrations.  相似文献   

6.
We performed density-functional theory analysis of nondissociative CO adsorption on 22 binary Au-alloy (Au(n)M(m)) clusters: n=0-3, m=0-3, and m+n=2 (dimers) or 3 (trimers), M=Cu/Ag/Pd/Pt. We report basis-set superposition error corrections to adsorption energies and include both internal energy of adsorption (DeltaU(ads)) and Gibbs free energy of adsorption (DeltaG(ads)) at standard conditions (298.15 K and 1 atm). We found onefold (atop) CO binding on all the clusters except Pd2 (twofold/bridged), Pt2 (twofold/bridged), and Pd3 (threefold). In agreement with the experimental results, we found that CO adsorption is thermodynamically favorable on pure Au/Cu clusters but not on pure Ag clusters and also observed the following adsorption affinity trend: Pd>Pt>Au>Cu>Ag. For alloy dimers we found the following patterns: Au2>M Au>M2 (M=Ag/Cu) and M2>M Au>Au2 (M=Pd/Pt). Alloying Ag/Cu dimers with (more reactive) Au enhanced adsorption and the opposite effect was observed for PdPt dimers. The Ag-Au, Cu-Au, and Pd-Au trimers followed the trends observed on dimers: Au3>M Au2>M2Au>M3 (M=Ag/Cu) and Pd3>Pd2Au>PdAu2>Au3. Interestingly, Pt-Au trimers reacted differently and alloying with Au systematically increased the adsorption affinity: PtAu2>Pt2Au>Pt3>Au3. A strikingly different behavior of Pt is also manifested by the triplet spin state and onefold (atop) binding in Pt3-CO which is in contradiction with the singlet spin state and threefold binding in Pd3-CO. We found a linear correlation between CO binding energy (BE) and elongation of the CO bond. For Ag-Au and Cu-Au clusters, the increase in CO BE (and elongation of the C-O bond which is probably due to the back donation) is accompanied by the decrease in the cluster-CO distance suggesting that the donation (from 5sigma highest occupied molecular orbital in CO to cluster lowest unoccupied molecular orbital) mechanism also contributes to the BE. For Pd-Au clusters, the cluster-CO distance (and CO bond length) increases with increase in the BE, suggesting that the donation mechanism may not be important for those clusters. No clear trend was observed for Pt-Au clusters.  相似文献   

7.
A simple model of gas flow and surface exchange with a single site Langmuir mechanism has been developed to describe effects of adsorption and desorption on trace gas concentrations at the outflow from a coated wall flow tube reactor. The model was tested by simulating experimental results for the uptake of HNO3 and HCl on ice films at temperatures and gas concentrations corresponding to the ice stability region in the upper troposphere. The experimental time-dependent uptake profiles were best fitted with an additional process involving diffusion of the adsorbed molecules into the ice film. The model allowed true surface coverages to be distinguished from total uptake including transfer to the bulk, leading to more accurate estimates of the Langmuir constant, Keq, for surface adsorption. A revised expression was obtained for the temperature dependence of the Keq=-(4.43 +/- 0.77)x 10(5)T+(10.72 +/- 1.75)x 10(7) hPa-1. Reasonable fits to the desorption profiles observed following cessation of exposure of the film to HNO3 or HCl were obtained at high surface coverage but at low coverage desorption was too slow. The analysis suggested that the ice surface was characterised by sites of different binding energy, some weakly bound sites from which the acid molecules desorbed rapidly, and some strong-binding sites which led to essentially irreversible uptake. Experiments involving competitive co-adsorption of HNO3 and HCl, conducted at relatively high equilibrium surface coverage, were well simulated by the model, as were those where the same surface was repeatedly exposed to gas phase acids.  相似文献   

8.
This work presents a detailed experimental and theoretical study of the oxidation of TiN(001) using a combination of synchrotron-based photoemission and density functional theory (DFT). Experimentally, the adsorption of O2 on TiN(001) was investigated at temperatures between 250 and 450 K. At the lowest temperature, there was chemisorption of oxygen (O(2,gas)-->2O(ads)) without significant surface oxidation. In contrast, at 450 K the amount of O2 adsorbed increased continuously, there was no evidence for an oxygen saturation coverage, a clear signal in the Ti 2p core level spectra denoted the presence of TiOx species, and desorption of both N2 and NO was detected. The DFT calculations show that the adsorption/dissociation of O2 is highly exothermic on a TiN(001) substrate and is carried out mainly by the Ti centers. A high oxygen coverage (larger than 0.5 ML) may induce some structural reconstructions of the surface. The exchange of a surface N atom by an O adatom is a highly endothermic process (DeltaE=2.84 eV). However, the overall oxidation of the surface layer is thermodynamically favored due to the energy released by the dissociative adsorption of O2 and the formation of N2 or NO. Both experimental and theoretical results lead to conclude that a TiN+mO2 -->TiOx + NO reaction is an important exit channel for nitrogen in the oxidation process.  相似文献   

9.
胭脂红酸极谱行为的研究   总被引:2,自引:0,他引:2  
在醋酸盐缓冲溶液中, 可获得胭脂红酸的单扫可逆吸附波。在pH4.3时, E_p=一0.65 V(vs. S.C.E.), 电极反应是由醌型还原为氢醌型。胭脂红酸在汞电极上的吸附符合Frumkin等温武。测得吸附系数β=7.0×10~6, 作用因素v=-0.92, 吸附速率常数k_(ads)=9.7×10~(-8) cms~(-1)。  相似文献   

10.
Uptake experiments of NO3 on mineral dust powder were carried out under continuous molecular flow conditions at 298 +/- 2 K using the thermal decomposition of N2O5 as NO3 source. In situ laser detection using resonance enhanced multiphoton ionization (REMPI) to specifically detect NO2 and NO in the presence of N2O5, NO3 and HNO3 was employed in addition to beam-sampling mass spectrometry. At [NO3] = (7.0 +/- 1.0) x 10(11) cm(-3) we found a steady state uptake coefficient gamma(ss) ranging from (3.4 +/- 1.6) x 10(-2) for natural limestone to (0.12 +/- 0.08) for Saharan Dust with gamma(ss) decreasing as [NO3] increased. NO3 adsorbed on mineral dust leads to uptake of NO2 in an Eley-Rideal mechanism that usually is not taken up in the absence of NO3. The disappearance of NO3 was in part accompanied by the formation of N2O5 and HNO3 in the presence of NO2. NO3 uptake performed on small amounts of Kaolinite and CaCO3 leads to formation of some N2O5 according to NO((3ads)) + NO(2(g)) --> N2O(5(ads)) --> N2O(5(g)). Slow formation of gas phase HNO3 on Kaolinite, CaCO3, Arizona Test Dust and natural limestone has also been observed and is clearly related to the presence of adsorbed water involved in the heterogeneous hydrolysis of N2O(5(ads)).  相似文献   

11.
Dispersion-corrected density functional theory calculations (DFT-D3) were performed for the adsorption of CO on MgO and C(2) H(2) on NaCl surfaces. An extension of our non-empirical scheme for the computation of atom-in-molecules dispersion coefficients is proposed. It is based on electrostatically embedded M(4)X(4) (M=Na, Mg) clusters that are used in TDDFT calculations of dynamic dipole polarizabilities. We find that the C(MM)(6) dispersion coefficients for bulk NaCl and MgO are reduced by factors of about 100 and 35 for Na and Mg, respectively, compared to the values of the free atoms. These are used in periodic DFT calculations with the revPBE semi-local density functional. As demonstrated by calculations of adsorption potential energy curves, the new C(6) coefficients lead to much more accurate energies (E(ads)) and molecule-surface distances than with previous DFT-D schemes. For NaCl/C(2) H(2) we obtained at the revPBE-D3(BJ) level a value of E(ads) =-7.4 kcal mol(-1) in good agreement with experimental data (-5.7 to -7.1 kcal mol(-1)). Dispersion-uncorrected DFT yields an unbound surface state. For the MgO/CO system, the computed revPBE-D3(BJ) value of E(ads) =-4.1 kcal mol(-1) is also in reasonable agreement with experimental results (-3.0 kcal mol(-1)) when thermal corrections are taken into account. Our new dispersion correction also improves computed lattice constants of the bulk systems significantly compared to plain DFT or previous DFT-D results. The extended DFT-D3 scheme also provides accurate non-covalent interactions for ionic systems without empirical adjustments and is suggested as a general tool in surface science.  相似文献   

12.
Numerous literature data indicate that the mean heat of adsorption of a monolayer of N(2) (DeltaQ(N(2))) on ice or snow at 77.15 K, determined by volumetric methods, is highly variable, suggesting that ice surface properties strongly depend on its mode of formation and its thermal history. Less numerous data on CH(4) adsorption show smaller variations of DeltaQ(CH(4)). If such variations are real, the extrapolation to atmospheric chemistry models of adsorption parameters measured on laboratory-made ice may be unwarranted. We have measured CH(4) adsorption on variable amounts of a crushed ice sample, to show that when the total surface area of the sample is below a threshold value, DeltaQ(CH(4)) decreases. We identify the cause of this artifact as an error in the molar budget, because the temperature gradient in the tube connecting the introduction and expansion volumes is not taken into account. Performing an adequate molar budget suppresses this artifact, except for ice samples with very small total surface areas, where the resolution of the manometer becomes a limiting factor and a further decrease in DeltaQ(CH(4)) is observed. Error in DeltaQ(gas) results in large errors in surface area, and we suggest that the value of DeltaQ(gas) obtained can be used to test the reliability of the surface area measurement. Copyright 2000 Academic Press.  相似文献   

13.
Acetic acid exists as dimers in organic solvents like benzene, toluene and xylene. Adsorption of dimeric acetic acid on activated charcoal (AC) at various temperatures from benzene, toluene and xylene solutions have been studied. The system obeys Langmuir isotherm, thus signifying a monolayer adsorption of dimers. Corrections on AC-solvent pore volume fillings, molecular cross sectional surface area of acetic acid dimers, the adsorption equilibrium constants, the free energy change and the enthalpy change values are computed at different temperatures for the three solvents. The adsorption process has been found to be physisorption type. The FTIR measurements show that the adsorbed acetic acid dimer seems to retain the cyclic structure against the open chain non-cyclic structure.  相似文献   

14.
The gas-phase acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine have been examined using both theoretical (B3LYP/6-31+G*) and experimental (bracketing, Cooks kinetic) methods. This paper represents a comprehensive examination of multiple acidic sites of thymine and cytosine and of the acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine. Thymine exists as the most stable "canonical" tautomer in the gas phase, with a DeltaH(acid) of 335 +/- 4 kcal mol(-1) (DeltaG(acid) = 328 +/- 4 kcal mol(-1)) for the more acidic N1-H. The acidity of the less acidic N3-H site has not, heretofore, been measured; we bracket a DeltaH(acid) value of 346 +/- 3 kcal mol(-1) (DeltaG(acid) = 339 +/- 3 kcal mol(-1)). The proton affinity (PA = DeltaH) of thymine is measured to be 211 +/- 3 kcal mol(-1) (GB = DeltaG = 203 +/- 3 kcal mol(-1)). Cytosine is known to have several stable tautomers in the gas phase in contrast to in solution, where the canonical tautomer predominates. Using bracketing methods in an FTMS, we measure a DeltaH(acid) for the more acidic site of 342 +/- 3 kcal mol(-1) (DeltaG(acid) = 335 +/- 3 kcal mol(-1)). The DeltaH(acid) of the less acidic site, previously unknown, is 352 +/- 4 kcal mol(-1) (345 +/- 4 kcal mol(-1)). The proton affinity is 228 +/- 3 kcal mol(-1) (GB = 220 +/- 3 kcal mol(-1)). Comparison of these values to calculations indicates that we most likely have a mixture of the canonical tautomer and two enol tautomers and possibly an imine tautomer under our conditions in the gas phase. We also measure the acidity and proton affinity of cytosine using the extended Cooks kinetic method. We form the proton-bound dimers via electrospray of an aqueous solution, which favors cytosine in the canonical form. The acidity of cytosine using this method is DeltaH(acid) = 343 +/- 3 kcal mol(-1), PA = 227 +/- 3 kcal mol(-1). We also examined 1-methyl cytosine, which has fewer accessible tautomers than cytosine. We measure a DeltaH(acid) of 349 +/- 3 kcal mol(-1) (DeltaG(acid) = 342 +/- 3 kcal mol(-1)) and a PA of 230 +/- 3 kcal mol(-1) (GB = 223 +/- 3 kcal mol(-1)). Our ultimate goal is to understand the intrinsic reactivity of nucleobases; gas-phase acidic and basic properties are of interest for chemical reasons and also possibly for biological purposes because biological media can be quite nonpolar.  相似文献   

15.
<正>The adsorption of NO on the M/c-ZrO_2(110)(M=Ru,Rh)surface has been studied with periodic slab model by PW91 approach of GGA within the framework of density functional theory.The results of geometry optimization indicated that the hollow site is energetically stable for Ru and Rh atoms' adsorption on the c-ZrO_2(110)surface with adsorption energies of 207.4 and 106.3 kJ/mol,respectively.When NO is adsorbed on the M/ZrO_2(110)surface,the N-down adsorption is the most stable.We also studied the adsorption of double NO on the M/c-ZrO_2(110)surface.Complete linear synchronous transit and quadratic synchronous transit approaches were used to search the transition state for dissociation reaction.NO has two possible dissociation passways:(1)2NO→N_2(g)+20(ads),(2)2NO→N_2O(g)+O(ads),and the former is easier than the latter based on the calculation results.  相似文献   

16.
Inverse gas chromatography (IGC) has been used in this work for characterizing the adsorption of different volatile organic compounds (VOCs) (1,2-dichloroethane (DCE), trichloroethylene (TCE), and n-hexane) over ceria-zirconia mixed oxides (Ce(x)Zr(1-x)O2, with x = 0, 0.15, 0.5, 0.68, 0.8 and 1). These materials have shown to be very active catalysts for the deep oxidation of the studied VOCs in previous papers. The enthalpies of adsorption (-deltaH(ads)), adsorption isotherms (corresponding to the Henry region), and dispersive (gamma(s)(D)) and specific (I(sp)) components of the surface energy for the adsorption of the investigated compounds are determined using IGC at infinite dilution. These chromatographic data and other surface parameters (surface area, oxygen storage capacity, surface acidity, and reducibility) are correlated with the activity and selectivity of these catalysts. As a result, for n-hexane, the catalytic activity is mainly correlated with the adsorption capacity of the solids, whereas the activity for chlorinated compounds oxidation (as well as the selectivity to oxidation products) depends on both oxygen storage capacity and specific interaction of the chlorinated compound with the surface.  相似文献   

17.
The gas-phase acidity of 3,3-dimethylcyclopropene (1) has been measured by bracketing and equilibrium techniques. Consistent with simple hybridization arguments, our value (deltaH degrees (acid) = 382.7 +/- 1.3 kcal mol(-)(1)) is indistinguishable from that for methylacetylene (i.e., deltadeltaH degrees (acid)(1 - CH(3)Ctbd1;CH) = 1.6 +/- 2.5 kcal mol(-)(1)). The electron affinity of 3,3-dimethylcyclopropenyl radical (1r) was also determined (EA = 37.6 +/- 3.5 kcal mol(-)(1)), and these quantities were combined in a thermodynamic cycle to afford the homolytic C-H bond dissociation energy. To our surprise, the latter quantity (107 +/- 4 kcal mol(-)(1)) is the same as that for methane, which cannot be explained in terms of the s-character in the C-H bonds. An orbital explanation (delocalization) is proposed to account for the extra stability of 1r. All of the results are supplemented with G3 and B3LYP computations, and both approaches are in good accord with the experimental values. We also note that for simple hydrocarbons which give localized carbanions upon deprotonation there is an apparent linear correlation between any two of the following three quantities: deltaH degrees (acid), BDE, and EA. This observation could be of considerable value in many diverse areas of chemistry.  相似文献   

18.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

19.
20.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号