首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
 Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. Received: 31 July 2000 / Accepted: 27 August 2001  相似文献   

2.
A Laser-Doppler anemometer and a pressure transducer were used to carry out detailed measurements of the mean and root mean square of the velocity and wall-pressure in an axisymmetric sudden expansion flow, with 0.4 and 0.5% by weight shear-thinning aqueous solutions of a low molecular weight polymer (6,000), after appropriate rheological characterisation. In spite of their very low molecular weight, these solutions still exhibited elongational elastic effects through drag reduction of up to 35% relative to Newtonian turbulent pipe flow, as shown by Pereira and Pinho (1994). The results showed small variations of the recirculation bubble length with polymer concentration and Reynolds number and reductions of the normal Reynolds stresses of up to 30%, especially in the tangential and radial directions. The reduction in normal Reynolds stresses within the shear layer is an elongational elastic effect, but this elasticity needs to be considerably more intense, such as with high molecular weight polymers, in order to strongly affect the mean flow characteristics. The observed mean flow patterns with these low molecular weight polymer solutions were indeed similar to those exhibited by Newtonian and inelastic fluids.  相似文献   

3.
 Measurements are reported for the turbulent flow through a sudden expansion of a moderately elastic shear-thinning liquid and also for two Newtonian liquids. The differences in the mean velocity fields for the two fluid types are relatively small, including the length of the recirculation region which is essentially unaffected by the fluid rheology. Although turbulent kinetic energy levels for the non-Newtonian fluids are always lower than for the Newtonian fluids, no significant difference is found in the relative contributions to the turbulent kinetic energy of the axial, radial and tangential normal stresses. Since the vorticity thicknesses are much the same for all flows, viscoelasticity appears to be responsible for the reduced levels of turbulent kinetic energy for the non-Newtonian fluids. Received: 6 November 1998/Accepted: 27 January 1999  相似文献   

4.
Mean and rms axial velocity-profile data obtained using laser Doppler anemometry are presented together with pressure-drop data for the flow through a concentric annulus (radius ratio κ = 0.506) of a Newtonian (a glycerine–water mixture) and non-Newtonian fluids—a semi-rigid shear-thinning polymer (a xanthan gum) and a polymer known to exhibit a yield stress (carbopol). A wider range of Reynolds numbers for the transitional flow regime is observed for the more shear-thinning fluids. In marked contrast to the Newtonian fluid, the higher shear stress on the inner wall compared to the outer wall does not lead to earlier transition for the non-Newtonian fluids where more turbulent activity is observed in the outer wall region. The mean axial velocity profiles show a slight shift (~5%) of the location of the maximum velocity towards the outer pipe wall within the transitional regime only for the Newtonian fluid.  相似文献   

5.
Velocity profile development has been studied experimentally in Newtonian and some non-Newtonian fluids. The entry length for the development of 99% of the terminal axial velocity from an initially flat profile has been found to be given byZ e = 1.1–0.112N(Re) for laminar flow Reynolds numbers between 1 and 1500 with Newtonian fluids. There were substantial increases in this length for weakly visco-elastic aqueous solutions of polyethylene oxide and polyacrylamide in the Reynolds number range (between 1 and 10) where these have been studied.  相似文献   

6.
This paper presents experimental investigations on nitrogen/non-Newtonian fluid two-phase flow in vertical noncircular microchannels, which have square or triangular cross-section with the hydraulic diameters being Dh = 2.5, 2.886 and 0.866 mm, respectively, by visualization method. Three non-Newtonian aqueous solutions with typical rheological properties, i.e., 0.4% carboxymethyl cellulose (CMC), 0.2% polyacrylamide (PAM) and 0.2% xanthan gum (XG) are chosen as the working fluids. The common flow patterns are identified as slug flow, churn flow and annular flow. The dispersed bubble flow is only found in the case with nitrogen/CMC solution two-phase flow in the largest channel. A new flow pattern of nitrogen/PAM solution two-phase flow, named chained bubble/slug flow, is observed in all the test channels. The flow regime maps are also developed and the results show that the rheological properties of the non-Newtonian fluid have remarkable influence on the flow pattern transitions. The geometrical factors of the microchannel such as the cross-section shape and hydraulic diameter of the channel can also affect the flow regime map. Finally, the results obtained in this work are compared with the available flow pattern transitions.  相似文献   

7.
郑诺  刘海龙 《力学学报》2022,54(7):1934-1942
非牛顿流体液滴撞击固体表面的行为广泛存在于多种工农业生产中, 然而目前相关研究主要关注牛顿流体, 非牛顿流变特性对液滴撞击动力学的影响机制还有待探索. 本文研究了纯剪切变稀流体(质量分数≤ 0.03%的黄原胶水溶液)液滴撞击疏水表面后的最大铺展及回弹行为. 通过高速摄像技术捕获液滴撞击疏水表面的运动过程及形态变化, 研究了液滴的铺展回缩过程. 实验结果表明, 在相同We下, 剪切变稀特性对液滴撞击疏水表面后的铺展阶段影响很小, 但对回缩阶段影响很大. 黄原胶浓度增加使得液滴依次表现出部分回弹、完全回弹和表面沉积三种不同的回弹行为. 利用能量守恒定律推导出了液滴能在疏水表面上回弹的临界无量纲高度ξc理论值. 发现牛顿流体与非牛顿流体液滴最大无量纲高度ξmax均符合标度律ξmax ~ αWe斜率随黄原胶浓度增大而减小. 基于有效雷诺数Reeff, 提出了一种有效黏度μeff表达式, 并据此建立了剪切变稀流体的最大无量纲直径βmax预测模型. 该模型在较广We区间与实验测量值取得了良好一致.   相似文献   

8.
Using nuclear magnetic resonance (NMR) flow imaging to examine fluid motions at constant velocities or flows that change relatively slowly has been well-documented in the literature. Application of this technique to accelerative flows, on the other hand, has been limited. This study reports the use of an NMR flow imaging method, for which acceleration is not explicitly compensated in the NMR pulse sequence, to measure axial and radial fluid motions during flow through an axisymmetric sudden contraction. In this flow geometry, both velocity and acceleration are spatially dependent. The flow contraction ratio was 2:1. The method was first applied to examine Newtonian liquids at low and high Reynolds numbers under laminar flow conditions. The measured axial and radial velocity profiles, without accounting for acceleration effects in the data analysis, across the contraction are in excellent qualitative agreement with previous experimental data and theoretical calculations reported in the literature. Quantitative comparison of the axial and radial velocities with numerical results indicates that the maximum error from acceleration effects is about 10%. The method has also been used to examine the flow of a concentrated suspension (50% by volume of solid particles) through the contraction. The flow kinematics of the suspension at creeping flow conditions appear to mimic those of the Newtonian fluid with some slight differences. NMR images taken immediately following the cessation of flow suggest a slight degree of particle migration toward the center of the pipe downstream of the contraction.  相似文献   

9.
A continuation method has been used with a finite element grid and a geometric perturbation to compute two successive symmetry breaking flow transitions with increasing Reynolds number in flow of generalized Newtonian fluids through a sudden planar expansion. With an expansion ratio of 16, the onset Reynolds number is particularly sensitive to small geometric asymmetry and the critical Reynolds numbers for the two successive flow transitions are found to be very close. These transitions are delayed to higher onset Reynolds numbers by increasing the degree of pseudoplasticity. This trend is observed experimentally as well in this work and may be attributed to the competing effects of shear thinning and inertia on the size of the corner vortex before the symmetry breaking flow transition. After the second transition with an expansion ratio of 16, the two large staggered vortices on opposite walls occupy most of the transverse dimension so that the core flow between the vortices appears as a thin jet oscillating along the flow direction. This is more pronounced for the pseudoplastic liquid. After the second transition, the degree of flow asymmetry at a given location downstream of the expansion plane is larger for the pseudoplastic liquid than for the Newtonian liquid at comparable Reynolds numbers. The last feature is also evident in the experimentally observed velocity profiles. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The flow and distribution of Newtonian, polymeric and colloid suspension fluids at low Reynolds numbers in bifurcations has importance in a wide range of disciplines, including microvascular physiology and microfluidic devices. A bifurcation consisting of circular capillaries laser etched into a hard polymer with inlet diameter 2.50 ± 0.01 mm, bifurcating to a small diameter outlet of 0.76 ± 0.01 mm and a large diameter outlet of 1.25 ± 0.01 mm is examined. Four distinct fluids (water, 0.25%wt xanthan gum, 8 and 22%vol hard-sphere colloidal suspensions) are flowed at flow rates from 10 to 30 ml/h corresponding to Reynolds numbers based on the entry flow from 0.001 to 8. PGSE NMR techniques are applied to obtain dynamic images of the fluids inside the bifurcation with spatial resolution of 59 × 59 μm/pixel in plane over a 200-μm-thick slice. Velocity in all three spatial directions is examined to determine the impact of secondary flows and characterize the transport in the bifurcation. The velocity data provide direct measurement of the volumetric distribution of the flow between the two channels as a function of flow rate. Water and the 8% colloidal suspension show a constant distribution with increasing flow rate, the xanthan gum shows an increase in fluid going into the larger outlet with higher flow rate, and the 22% colloidal suspension shows a decrease in fluid entering the larger channel with higher flow rate. For the colloidal particle flow, the distribution of colloid particles down the capillary is determined by examining the spectrally resolved propagator for the oil inside the core–shell particles in a direction perpendicular to the axial flow. Using dynamic magnetic resonance microscopy, the potential for using magnetic resonance for “particle counting” in a microscale bifurcation is thus demonstrated.  相似文献   

11.
A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.  相似文献   

12.
 A comprehensive experimental study of the volumetric transfer coefficient k L a with Newtonian and non-Newtonian fluids in bubble columns using CO2 as gas phase is the objective of this work. The evaluation of the hydrodynamic characteristics of the bubble columns and delineated the different hydrodynamic regimes considering column geometry, gas flow, liquid height and type of fluid (Newtonian and non-Newtonian) suggest a general applicability of the proposed model. An explanation about of the k L a values in non-Newtonian fluid is offered take into account shear rate, column geometry, viscosity and results reported in the literature previously. Received on 31 July 1999  相似文献   

13.
The rheology of dilute, colloidal suspensions in polymeric suspending fluids can be studied with simultaneous dichroism and birefringence measurements. The dichroism provides a direct measure of the particle dynamics, but the birefringence is a composite property with independent contributions from the suspended particles and the polymer molecules. For suspensions where the contribution from the particles is significant, the composite birefringence must be decoupled in order to analyze the dynamics of the polymeric suspending fluid. A method to perform the decoupling is derived and then demonstrated through transient shear flow experiments with dilute suspensions ofFeOOH particles in semi-dilute, xanthan gum suspending fluids. The birefringence of the xanthan gum suspending fluid is calculated from experimental measurements of the composite birefringence and the dichroism of the suspension. To gather information on particle/polymer interactions, the calculated birefringence is compared to the birefringence of xanthan gum solutions containing no suspended particles and the dirchoism is compared to that of a suspension in a Newtonian fluid.  相似文献   

14.
The results of direct numerical simulation of turbulent flows of non-Newtonian pseudoplastic fluids in a straight pipe are presented. The data on the distributions of the turbulent stress tensor components and the shear stress and turbulent kinetic energy balances are obtained for steady turbulent flows at the Reynolds numbers of 104 and 2×104. As distinct from Newtonian fluid flows, the viscous shear stresses turn out to be significant even far from the wall. In power-law fluid flows the mechanism of the energy transport from axial to transverse component fluctuations is suppressed. It is shown that with decrease in the fluid index the turbulent transfer of the momentum and the velocity fluctuations between the wall layer and the flow core reduces, while the turbulent energy flux toward the wall increases. The earlier-proposed models for the average viscosity and the non-Newtonian one-point correlations are in good agreement with the data of direct numerical simulation.  相似文献   

15.
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.  相似文献   

16.
The objective of this paper is to examine the effect of bubbles on the turbulence levels of a water jet. Simultaneous measurements of the axial and radial velocity components were taken in a bubbly jet with a Laser Doppler Velocimeter (LDV) and then compared to the velocities of a single phase jet at the same liquid flow rate. Mean bubble diameters ranged from 0.6 to 2 mm and the void fractions were up to about 20%. The liquid Reynolds numbers were from 5,000 to 10,000 approximately. The measurements extended to from an axial distance of 4–12 cm. It was observed that bubbles did not affect significantly the average velocity profiles in the jet. However bubbles increased the turbulence intensities in the core of the jet near the jet exit. The increase in turbulence intensities was more pronounced at lower Reynolds numbers and at higher void fractions.  相似文献   

17.
The interaction between Taylor bubbles rising in stagnant non-Newtonian solutions was studied. Aqueous solutions of carboxymethylcellulose (CMC) and polyacrylamide (PAA) polymers were used to study the effect of different rheological properties: shear viscosity and viscoelasticity. The solutions studied covered a range of Reynolds numbers between 10 and 714, and Deborah numbers up to 14. The study was performed with pairs of Taylor bubbles rising in a vertical column (0.032 m internal diameter) filled with stagnant liquid. The velocities of the leading and trailing bubbles were measured by sets of laser diodes/photocells placed along the column. The velocity of the trailing bubble was analysed together with the liquid velocity profile in the wake of a single rising bubble (Particle Image Velocimetry data obtained from the literature). For the less concentrated CMC solutions, with moderate shear viscosity and low viscoelasticity, the interaction between Taylor bubbles was similar to that found in Newtonian fluids. For the most concentrated CMC solution, which has high shear viscosity and moderate viscoelasticity, a negative wake forms behind the Taylor bubbles, inhibiting coalescence since the bubbles maintain a minimum distance of about 1D between them. For the PAA solutions, with moderate shear viscosity but higher viscoelasticity than the CMC solutions, longer wake lengths are seen, which are responsible for trailing bubble acceleration at greater distances from the leading bubble. Also in the PAA solutions, the long time needed for the fluid to recover its initial shear viscosity after the passage of the first bubble makes the fluid less resistant to the trailing bubble flow. Hence, the trailing bubble can travel at a higher velocity than the leading bubble, even at distances above 90D.  相似文献   

18.
In this work we investigate the three-dimensional laminar flow of Newtonian and viscoelastic fluids through square–square expansions. The experimental results obtained in this simple geometry provide useful data for benchmarking purposes in complex three-dimensional flows. Visualizations of the flow patterns were performed using streak photography, the velocity field of the flow was measured in detail using particle image velocimetry and additionally, pressure drop measurements were carried out. The Newtonian fluid flow was investigated for the expansion ratios of 1:2.4, 1:4 and 1:8 and the experimental results were compared with numerical predictions. For all expansion ratios studied, a corner vortex is observed downstream of the expansion and an increase of the flow inertia leads to an enhancement of the vortex size. Good agreement is found between experimental and numerical results. The flow of the two non-Newtonian fluids was investigated experimentally for expansion ratios of 1:2.4, 1:4, 1:8 and 1:12, and compared with numerical simulations using the Oldroyd-B, FENE-MCR and sPTT constitutive equations. For both the Boger and shear-thinning viscoelastic fluids, a corner vortex appears downstream of the expansion, which decreases in size and strength when the elasticity of the flow is increased. For all fluids and expansion ratios studied, the recirculations that are formed downstream of the square–square expansion exhibit a three-dimensional structure evidenced by a helical flow, which is also predicted in the numerical simulations.  相似文献   

19.
为探讨口腔环境下流体的流动行为,采用数值方法与流变试验深入研究舌/上颚微间隙下流体流量的影响因素. 建立舌/上颚微间隙的简化模型及Reynolds方程,通过数值方法获取微间隙下流量变化;在DHR-2流变仪上研究非牛顿流体的黏度与剪切率的变化,探讨牛顿流体和非牛顿流体的流量影响. 结果表明:牛顿流体流量平方的倒数同载荷和黏度比值和时间均呈线性函数关系;所制备的非牛顿流体近似为幂律流体,其黏度随脂肪含量的增加而增大,而非牛顿流体流量率先高于后低于等效牛顿流体,其研究结果将为特定人群功能产品的研发提供技术支持.   相似文献   

20.
For Newtonian fluids, the engineering predictions for pressure drop in turbulent pipe flow are well established. However, in the case of non-Newtonian liquids, only a few design techniques have been proposed and these do not share a common basis with the approach for Newtonian systems. This present work attempts to provide a common basis for both Newtonian and non-Newtonian systems in situations where anomalous wall effects are absent. Previously published experimental data suggest that if the Reynolds number is calculated on the basis of the apparent viscosity at the wall then the standard Newtonian correlations can be used for the prediction of pressure drop. The use of the wall viscosity in defining the Reynolds number also serves as a test for anomalous behaviour. Any departure of the experimental data from the Newtonian turbulent friction factor correlation indicates anomalous behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号