首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
High-frequency electron paramagnetic resonance (HFEPR) data are presented for four closely related tetranuclear Ni(II) complexes, [Ni(hmp)(MeOH)Cl]4.H2O (1a), [Ni(hmp)(MeOH)Br]4.H2O (1b), [Ni(hmp)(EtOH)Cl]4.H2O (2), and [Ni(hmp)(dmb)Cl]4 (3) (where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3'-dimethyl-1-butanol), which exhibit magnetic bistability (hysteresis) and fast magnetization tunneling at low temperatures, properties which suggest they are single-molecule magnets (SMMs). The HFEPR spectra confirm spin S = 4 ground states and dominant uniaxial anisotropy (DSz(2), D < 0) for all four complexes, which are the essential ingredients for a SMM. The individual fine structure peaks (due to zero-field splitting) for complexes 1a, 1b, and 2 are rather broad. They also exhibit further (significant) splitting, which can be explained by the fact that there exists two crystallographically distinct Ni 4 sites in the lattices for these complexes, with associated differences in metal-ligand bond lengths and different zero-field splitting (ZFS) parameters. The broad EPR lines, meanwhile, may be attributed to ligand and solvent disorder, which results in additional distributions of microenvironments. In the case of complex 3, there are no solvate molecules in the structure, and only one distinct Ni 4 molecule in the lattice. Consequently, the HFEPR data for complex 3 are extremely sharp. As the temperature of a crystal of complex 3 is decreased, the HFEPR spectrum splits abruptly at approximately 46 K into two patterns with very slightly different ZFS parameters. Heat capacity data suggest that this is caused by a structural transition at 46.6 K. A single-crystal X-ray structure at 12(2) K indicates large thermal parameters on the terminal methyl groups of the dmb (3,3-dimethyl-1-butanol) ligand. Most likely there exists dynamic disorder of parts of the dmb ligand above 46.6 K; an order-disorder structural phase transition at 46.6 K then removes some of the motion. A further decrease in temperature (<6 K) leads to further fine structure splittings for complex 3. This behavior is thought to be due to the onset of short-range magnetic correlations/coherences between molecules caused by weak intermolecular magnetic exchange interactions.  相似文献   

2.
High-field electron paramagnetic resonance spectra were collected at several frequencies for a single crystal of [Zn3.91Ni0.09(hmp)4(dmb)4Cl4] (1), where dmb is 3,3-dimethyl-1-butanol and hmp- is the monoanion of 2-hydroxymethylpyridine. This crystal is isostructural to [Ni4(hmp)4(dmb)4Cl4] (2), which has been characterized to be a single-molecule magnet (SMM) with fast quantum tunneling of its magnetization (QTM). The single Ni(II) ion zero-field-splitting (zfs) parameters Di [= -5.30(5) cm(-1)] and Ei [= +/-1.20(2) cm(-1)] in the doped complex 1 were evaluated by rotation of a crystal in three planes. The easy-axes of magnetization associated with the single-ion zfs interactions were also found to be tilted 15 degrees away from the crystallographic c direction. This inclination provides a possible explanation for the fast QTM observed for complex 2. The single-ion zfs parameters are then related to the zfs parameters for the Ni4 molecule by irreducible tensor methods to give D = -0.69 cm(-1) for the S = 4 ground state of the SMM, where the axial zfs interaction is given by DS(Z)2.  相似文献   

3.
Reactions of the rhombic [MnII2 MnIII2 (hmp)6]4+ complex in acetonitrile with simple carboxylate ligands yield (i) three new isolated [Mn4] complexes, namely [Mn4(hmp)6(CH3COO)2(H2O)2](ClO4)2.4H2O (1), [Mn4(hmp)6(CCl3COO)2(H2O)2](ClO4)2 (2) and [Mn4(hmp)6(C6H5COO)2(H2O)2](ClO4)2.4CH3CN.2H2O (3) in the presence of either bulky carboxylate or of an excess of Mn(II) source; and (ii) two 1D arrangements of [Mn4] complexes connected through double syn-syn carboxylate bridges when using acetate and chloroacetate, namely {[Mn4(hmp)6(CH3COO)2](ClO4)2.H2O}n (4) and {[Mn4(hmp)6(ClCH2COO)2](ClO4)2.2H2O}n (5). The assembly of such building blocks can thus be controlled by an adequate choice of the bridging anion. As expected, the isolated [Mn4] complexes behave as Single-Molecule Magnets as shown by the study of their static and dynamic magnetic properties. Detailed magnetic studies both on polycrystalline samples and single crystals show that the chain compounds are isolated antiferromagnetic chains. The slow relaxation of their staggered magnetization has been studied thanks to finite-size effects induced by the intrinsic defects of the material  相似文献   

4.
Two series of thiol-bridged dimeric desoxo molybdenum(IV) and tungsten(IV) bis(dithiolene) complexes, [Et(4)N](2)[M(IV)(2)(SR)(2)(mnt)(4)] [M = Mo, R = (1) -Ph, (2) -CH(2)Ph, (3) -CH(2)CH(3), (4) -CH(2)CH(2)OH; M = W, R = (1a) -Ph, (2a) -CH(2)Ph, (3a) -CH(2)CH(3), (4a) -CH(2)CH(2)OH] and one monomeric desoxo complex, [Et(4)N](2)[WIV(SPh)(2)(mnt)(2)] (5a) are reported. These complexes are diamagnetic, and crystal structures of each of the complex (except 5a) exhibits a dimeric {M(IV)(2)(SR)(2)} core without any metal-metal bond where each metal atom possesses hexa coordination. The M-SR distance ranges from 2.437 to 2.484 Angstrom in molybdenum complexes and from 2.418 to 2.469 Angstrom in tungsten complexes. These complexes display Mo-S(R)-Mo angles ranging from 92.84 degrees to 96.20 degrees in the case of 1-4 and W-S(R)-W angles ranging from 91.20 degrees to 96.25 degrees in the case of 1a-4a. Interestingly, both the series of Mo(IV) and W(IV) dimeric complexes respond to an unprecedented interconversion between the dimer and the corresponding hexacoordinated monomer upon change of pH. This pH-dependent interconversion establishes the fact that even the pentacoordinated Mo(IV) and W(IV) bis(dithiolene) moieties are forced to dimerize; these can easily be reverted back to the corresponding monomeric complex, reflecting the utility of dithiolene ligand in stabilizing the Mo(IV)/W(IV) moiety in synthesized complexes similar to the active sites present in native proteins.  相似文献   

5.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

6.
Four discrete Mn(III)/Mn(II) tetranuclear complexes with a double-cuboidal core, [Mn(4)(hmp)(6)(CH(3)CN)(2)(H(2)O)(4)](ClO(4))(4).2CH(3)CN (1), [Mn(4)(hmp)(6)(H(2)O)(4)](ClO(4))(4).2H(2)O (2), [Mn(4)(hmp)(6)(H(2)O)(2)(NO(3))(2)](ClO(4))(2).4H(2)O (3), and [Mn(4)(hmp)(6)(Hhmp)(2)](ClO(4))(4).2CH(3)CN (4), were synthesized by reaction of Hhmp (2-hydroxymethylpyridine) with Mn(ClO(4))(2).6H(2)O in the presence of tetraethylammonium hydroxide and subsequent addition of NaNO(3) (3) or an excess of Hhmp (4). Direct current (dc) magnetic measurements show that both Mn(2+)-Mn(3+) and Mn(3+)-Mn(3+) magnetic interactions are ferromagnetic in 1-3 leading to an S(T) = 9 ground state for the Mn(4) unit. Furthermore, these complexes are single-molecule magnets (SMMs) clearly showing both thermally activated and ground-state tunneling regimes. Slight changes in the [Mn(4)] core geometry result in an S(T) = 1 ground state in 4. A one-dimensional assembly of [Mn(4)] units, catena-{[Mn(4)(hmp)(6)(N(3))(2)](ClO(4))(2)} (5), was obtained in the same synthetic conditions with the subsequent addition of NaN(3). Double chairlike N(3)(-) bridges connect identical [Mn(4)] units into a chain arrangement. This material behaves as an Ising assembly of S(T) = 9 tetramers weakly antiferromagnetically coupled. Slow relaxation of the magnetization is observed at low temperature for the first time in an antiferromagnetic chain, following an activated behavior with Delta(tau)/k(B) = 47 K and tau(0) = 7 x 10(-)(11) s. The observation of this original thermally activated relaxation process is induced by finite-size effects and in particular by the noncompensation of spins in segments of odd-number units. Generalizing the known theories on the dynamic properties of polydisperse finite segments of antiferromagnetically coupled Ising spins, the theoretical expressions of the characteristic energy gaps Delta(xi) and Delta(tau) were estimated and successfully compared to the experimental values.  相似文献   

7.
The side-on end-on dinitrogen complex [PhP(CH(2)SiMe(2)NPh)(2)Ta](μ-H)(2)(μ-η(2):η(1)-N(2)) reacts with CS(2) with complete cleavage of both C=S double bonds and the formation of [PhP(CH(2)SiMe(2)NPh)(2)Ta](μ-S)(2)(μ-CH(2)), which has two bridging sulfides and a bridging methylene unit. Further reaction with H(2) produces CH(4) and the disulfide complex.  相似文献   

8.
The pseudotetrahedral, formally 5-coordinate complex [Ni(eta 3-CH2C(CH3)CH2)(SbPh3)3][BAr'4] (Ar' = 3,5-C6H3(CF3)2) as well as the 4-coordinate derivative [Ni(eta 3-CH2C(CH3)CH2)(AsPh3)2][BAr'4] act as extremely efficient catalysts for the oligomerization of styrene.  相似文献   

9.
A family of distorted heterometallic cubanes, [Mn (III) 3Ni (II)(hmp) 3O(N 3) 3(O 2CR) 3], where O 2CR (-) is benzoate ( 1), 3-phenylpropionate ( 2), 1-adamantanecarboxylate ( 3), or acetate ( 4) and hmp (-) is the anion of 2-pyridinemethanol, was synthesized and structurally as well as magnetically characterized. These complexes have a distorted-cubane core structure similar to that found in the S = 9/2 Mn 4 cubane family of complexes. Complexes 1, 3, and 4 crystallize in rhombohedral, hexagonal, and cubic space groups, respectively, and have C 3 molecular symmetry, while complex 2 crystallizes in the monoclinic space group Cc with local C 1 symmetry. Magnetic susceptibility and magnetization hysteresis measurements and high-frequency electron paramagnetic resonance (HFEPR) spectroscopy established that complexes 1-4 have S = 5 spin ground states with axial zero-field splitting (ZFS) parameters ( D) ranging from -0.20 to -0.33 cm (-1). Magnetization versus direct-current field sweeps below 1.1 K revealed hysteresis loops with magnetization relaxation, definitely indicating that complexes 1-4 are single-molecule magnets that exhibit quantum tunneling of magnetization (QTM) through an anisotropy barrier. Complex 2 exhibits the smallest coercive field and fastest magnetization tunneling rate, suggesting a significant rhombic ZFS parameter ( E), as expected from the low C 1 symmetry. This was confirmed by HFEPR spectroscopy studies on single crystals that gave the following parameter values for complex 2: gz = 1.98, gx = gy = 1.95, D = -0.17 cm (-1), B 4 (0) = -6.68 x 10 (-5) cm (-1), E = 6.68 x 10 (-3) cm (-1), and B 4 (2) = -1.00 x 10 (-4) cm (-1). Single-crystal HFEPR data for complex 1 gave g z = 2.02, gx = gy = 1.95, D = -0.23 cm (-1), and B 4 (0) = -5.68 x 10 (-5) cm (-1), in keeping with the C 3 site symmetry of this Mn 3Ni complex. The combined results highlight the importance of spin-parity effects and molecular symmetry, which determine the QTM rates.  相似文献   

10.
Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))]][BPh4].  相似文献   

11.
A series of fluorous derivatives of group 10 complexes MCl(2)(dppe) and [M(dppe)(2)](BF(4))(2) (M = Ni, Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane) and cis-PtCl(2)(PPh(3))(2) was synthesized. The influence of para-(1H,1H,2H,2H-perfluoroalkyl)dimethylsilyl-functionalization of the phosphine phenyl groups of these complexes, as studied by NMR spectroscopy, cyclovoltammetry (CV), XPS analyses, as well as DFT calculations, points to a weak steric and no significant inductive electronic effect. The steric effect is most pronounced for M = Ni and leads in the case of NiCl(2)(1c) (3c) and [Ni(1c)(2)](BF(4))(2) (7c) (1c = [CH(2)P[C(6)H(4)(SiMe(2)CH(2)CH(2)C(6)F(13))-4](2)](2)) to a tetrahedral distortion from the expected square planar geometry. The solubility behavior of NiCl(2)[CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1)b)-4](2)](2) (3: b = 1-3; x = 6, 8) in THF, toluene, and c-C(6)F(11)CF(3) was found to follow the same trends as those observed for the free fluorous ligands 1. A similar correlation between the partition coefficient (P) of complexes 3 and free 1 was observed in fluorous biphasic solvent systems, with a maximum value obtained for 3f (b = 3, x = 6, P = 23 in favor of the fluorous phase).  相似文献   

12.
Four rhodium dimers have been synthesized with a bridging diisocyanide ligand, dmb (2,2-dimethyl-1,3-diisocyanopropane): [Rh2(dmb)4](BPh4)2, [Rh2(dmb)4Cl2]Cl2, [Rh2(dmb)4I2](PF6)2, and [Rh2(dmb)2(dppm)2](BPh4)2 (dppm = bis(diphenylphosphino)methane). The complexes have been characterized by elemental analysis and mass spectrometry, as well as UV-visible, IR, and 1H NMR spectroscopies. X-ray crystal structures of the rhodium(I) complexes, [Rh2(dmb)4](BPh4)2 . 1.5CH3CN (3.2330(4), 3.2265(4) A) and [Rh2(dmb)2(dppm)2](BPh4)2.0.5CH3OH . 0.2H2O (3.0371(5) A), confirm the existence of short Rh...Rh interactions. The metal-metal separation for the rhodium(II) adduct, [Rh(2)(dmb)4Cl2]Cl2.6CHCl3 (2.8465(6) A), is consistent with a formal Rh-Rh bond. For the two luminescent rhodium(I) dimers and six previously investigated diisocyano-bridged dimers with and without dppm ligands, the intense spin-allowed dsigma-->psigma absorption band maximum shifts to longer wavelengths with decreasing Rh...Rh separation, and there is an approximate correlation between band energy and the inverse of the metal-metal separation cubed. Both [Rh2(dmb)4]2+ and [Rh2(dmb)4(dppm)2]2+ undergo oxidative addition in the presence of iodine. In the conversion of [Rh2(dmb)4]2+ to [Rh2(dmb)4I2]2+, the observed intermediate is tentatively assigned to a tetramer composed of two rhodium dimers. In the case of [Rh2(dmb)2(dppm)2]2+, no intermediate was detected.  相似文献   

13.
多硫二硫醇烯配合物[Ni(C5S9)2]电磁学性能的研究   总被引:2,自引:0,他引:2  
多硫 1 ,2 二硫醇烯能与过渡金属离子形成具有特殊平面共轭结构的稳定配合物 ,是构成有机导体或超导体的基本“砖块”[1,2 ] 。配合物的晶体结构研究表明 ,分子之间通过S…S原子p轨道的重叠而存在的超分子相互作用是配合物具有高导电性的一个重要特征[3 ] 。增加分子间超分子相互作用的一个有效方法是增加配体上硫原子的个数。我们以C6S10 (图 1 )为中间体得到C5S2 -9(图2 ) ,与Ni2 + 离子配位后在四种不同阳离子作用下生成 (Cat)2 [Ni(C5S9)2 ]型二价阴离子配合物。当这些配合物用I2 氧化时都生成了中性配位化合物 [Ni…  相似文献   

14.
Polynuclear manganese(II), cobalt(II)/(III), iron(II)/(III) and nickel(II) complexes of a group of flexible polydentate dihydrazone ligands, based on pyridine-2,6-dipicolinic (A), oxalic (B) and malonic (C) subunits are described. Structural details are reported for the linear dinuclear complexes [Ni2(2poap)2(H2O)2](NO3)4 . 2CH3OH . 2.5H2O (1), [Mn2(pttp)(NO3)2(CH3OH)2(H2O)2](NO3)2 . H2O (2) and [Mn2(mapttp)2(NO3)2(H2O)2](NO3)2 . 10H2O (3), a square tetranuclear complex [Co4(pttp)4]Br6 . 9H2O (4), a tetranuclear tetrahedral complex [Ni4(pttp)6](BF4)6F2 . 14H2O (7), and a mixed spin state tetranuclear Ni(II) complex [(2pyoap)2Ni4(CH3OH)4] . 1.5CH3OH (10), with a diamond-like arrangement of metal ions. The paramagnetic metal centers are well separated in each case, leading to weak antiferromagnetic coupling or non-existent spin exchange.  相似文献   

15.
The results of kinetic, deuterium-labeling, and low-temperature NMR studies have established a mechanism for the palladium-catalyzed cyclization/hydrosilylation of dimethyl diallylmalonate (1) with triethylsilane involving rapid, irreversible conversion of the palladium silyl complex [(phen)Pd(SiEt(3))(NCAr)](+) [BAr(4)](-) [Ar = 3,5-C(6)H(3)(CF(3))(2)] (4b) and 1 to the palladium 5-hexenyl chelate complex [(phen)Pd[eta(1),eta(2)-CH(CH(2)SiEt(3))CH(2)C(CO(2)Me)(2)CH(2)CH=CH(2)]](+) [BAr(4)](-) (5), followed by intramolecular carbometalation of 5 to form the palladium cyclopentylmethyl complex trans-[(phen)Pd[CH2CHCH2C(CO2Me)2CH2CHCH2SiEt3](NCAr)]+ [BAr4]- (6), and associative silylation of 6 to release 3 and regenerate 4b.  相似文献   

16.
Vinyl acetate (VA) and vinyl trifluoroacetate (VA(f)) react with [(NwedgeN)Pd(Me)(L)][X] (M = Pd, Ni, (NwedgeN) = N,N'-1,2-acenaphthylenediylidene bis(2,6-dimethyl aniline), Ar(f) = 3,5-trifluoromethyl phenyl, L = Ar(f)CN, Et2O; X = B(Ar(f))4-, SbF6-) to form pi-adducts 3 and 5 at -40 degrees C. Binding affinities relative to ethylene have been determined. Migratory insertion occurs in a 2,1 fashion (DeltaG++ = 19.4 kcal/mol, 0 degrees C for VA, and 17.4 kcal/mol, -40 degrees C for VA(f)) to yield five-membered chelate complexes [(NwedgeN)Pd(kappa2-CH(Et)(OC(O)-CH3))]+, 4, and [(NwedgeN)Pd(kappa2-CH(Et)(OC(O)CF3))]+, 6. When VA is added to [(NwedgeN)Ni(CH3)]+, an equilibrium mixture of an eta2 olefin complex, 8c, and a kappa-oxygen complex, 8o, results. Insertion occurs from the eta2 olefin complex, 8c (DeltaG++ = 15.5 kcal/mol, -51 degrees C), in both a 2,1 and a 1,2 fashion to generate a mixture of five- and six-membered chelates, 9(2,1) and 9(1,2). VA(f) inserts into the Ni-CH3 bond (-80 degrees C) to form a five-membered chelate with no detectable intermediate. Thermolysis of the Pd chelates results in beta-acetate elimination from 4 (DeltaG++ = 25.5 kcal/mol, 60 degrees C) and beta-trifluoroacetate elimination from 6 (DeltaG = 20.5 kcal/mol, 10 degrees C). The five-membered Ni chelate, 9(2,1), is quite stable at room temperature, but the six-membered chelate, 9(1,2), undergoes beta-elimination at -34 degrees C. Treatment of the OAc(f) containing Pd chelate 6 with ethylene results in complete opening to the pi-complex [(NwedgeN)Pd(kappa2-CH(Et)(OAc(f)))(CH2CH2)]+ (OAc(f) = OC(O)CF3), 18, while reaction of the OAc containing Pd chelate 4 with ethylene establishes an equilibrium between 4 and the open form 16, strongly favoring the closed chelate 4 (DeltaH = -4.1 kcal/mol, DeltaS = -23 eu, K = 0.009 M(-1) at 25 degrees C). The open chelates undergo migratory insertion at much slower rates relative to those of the simple (NwedgeN)Pd(CH3)(CH2CH2)+ analogue. These quantitative studies provide an explanation for the behavior of VA and VA(f) in attempted copolymerizations with ethylene.  相似文献   

17.
Several intermediates and final products of the reactions of [Rh(2)(mu-CH(3)COO)(4)(CH(3)OH)(2)] with a tridentate ligand bis(2-pyridylmethyl)amine (bpa) and bidentate 2-(aminomethyl)pyridine (amp) have been isolated, and the chelation processes of these ligands to the dirhodium(II) center are discussed. The reaction of a 2 equiv amount of bpa in chloroform afforded three products, [Rh(2)(mu-CH(3)COO)(2)(eta(1)-CH(3)COO)(bpa)(2)](+) ([1]+), C(2)-[Rh(2)(mu-CH(3)COO)(2)(bpa)(2)](2+) ([2a](2+)), and C(s)-[Rh(2)(mu-CH(3)COO)(2)(bpa)(2)](2+) ([2b](2+)), where C(2) and C(s) denote the molecular symmetry of the two geometrical isomers. X-ray crystallography revealed that [1](+) contains ax-eq chelated bidentate and ax-eq-eq tridentate bpa and that [2a](2+) and [2b](2+) have two ax-eq-eq tridentate bpa ligands (ax denotes the site trans to the Rh-Rh bond, and eq, the site perpendicular to it). The reaction is initiated by almost instantaneous monodentate or inter-Rh(2)-unit bridging coordination of bpa at the ax sites, which is followed by very slow ax-eq chelate formation and then ultimate ax-eq-eq tridentate coordination. The reaction of [Rh(2)(mu-CH(3)COO)(4)(CH(3)OH)(2)] with amp in 1:2 ratio in chloroform initially gives an insoluble polymer in which amp interconnects the ax sites of the dirhodium(II) units. Further reactions afforded [Rh(2)(mu-CH(3)COO)(2)(eta(1)-CH(3)COO)(amp)(2)](+) ([4](+)) and [Rh(2)(mu-CH(3)COO)(2)(amp)(2)](2+) ([5](2)(+)). The X-ray structural studies show that [4](+) has one ax-eq and one eq-eq chelate and [5](2)(+) two eq-eq chelates. More rigid tridentate ligands 2,2':6',2"-terpyridine (tpy) and 4'-chloro-2,2':6',2"-terpyridine (Cl-tpy) have been introduced at ax sites in a monodentate mode ([Rh(2)(mu-CH(3)COO)(4)(tpy)(2)] (8) and [Rh(2)(mu-CH(3)COO)(4)(Cl-tpy)(2)] (9)). While the Rh-Rh distances of these complexes and [Rh(2)(mu-CH(3)COO)(2)(2,2'-bipyridine)(2)(py)(2)](2+) ([7](2)(+)) are practically unchanged (2.56-2.60 A) except for 8 and 9 (2.4 A), the Rh-N(ax) distances range from 2.11 to 2.35 A. Relatively short distances are found for the compounds with ax-eq or ax-eq-eq chelates (<2.22 A). Longest distances (2.32-2.35 A) found for 8 and 9 may be due to the steric effect. The distances of other complexes fall in the normal region. The visible band of the pi*(Rh-Rh) --> sigma*(Rh-Rh) transition in solid-state reflectance spectra shows a red-shift as the Rh[bond]N(ax) distances becomes longer.  相似文献   

18.
Chiou TW  Liaw WF 《Inorganic chemistry》2008,47(17):7908-7913
The unprecedented nickel(III) thiolate [Ni (III)(OR)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [R = Ph ( 1), Me ( 3)] containing the terminal Ni (III)-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) with 3 equiv of [Na][OPh] in tetrahydrofuran (THF)-CH 3CN and the reaction of complex 1 with 1 equiv of [Bu 4N][OMe] in THF-CH 3OH, respectively. Interestingly, the addition of complex 1 into the THF-CH 3OH solution of [Me 4N][OH] also yielded complex 3. In contrast to the inertness of complex [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH 3CN solution of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) yielded the known [Ni (III)(CH 2CN)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) ( 4). At 77 K, complexes 1 and 3 exhibit a rhombic signal with g values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic g values of the known trigonal-bipyramidal Ni (III) [Ni (III)(L)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) (L = SePh, SEt, Cl) complexes. Compared to complexes [Ni (III)(EPh)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [E = S ( 2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex 1 coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni (III)-OMe bond length of 1.885(2) A found in complex 3, the longer Ni (III)-OPh bond distance of 1.910(3) A found in complex 1 may be attributed to the absence of sigma and pi donation from the [OPh]-coordinated ligand to the Ni (III) center.  相似文献   

19.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

20.
A series of new hydroxyindanone-imine ligands [PhN=CC2H3(CH3)C6H2(CH3)OH] (HL1) and [ArN=CC2H3(CH3)C6H2(R)OH] (Ar = 2,6-i-Pr(2)C(6)H(3), R = Me (HL2), R = H (HL3), and R = Cl (HL4)) were synthesized and characterized. Reactions of hydroxyindanone-imines with Ni(OAc)(2).4H(2)O result in the formation of the trinuclear hexa(indanone-iminato)tri(nickel(II)) complex Ni(3)[PhN=CC2H3(CH3)C6H2(CH3)O](6) (1) and the mononuclear bis(indanone-iminato)nickel(II) complexes Ni[ArN=CC2H3(CH3)C6H2(R)O](2) (Ar = 2,6-i-Pr(2)C(6)H(3), R = Me (2), R = H (3), and R = Cl (4)). All nickel complexes were characterized by their IR, NMR spectra and elemental analyses. In addition, X-ray structure analyses were performed for complexes 1 and 2. After being activated with methylaluminoxane (MAO), these nickel(II) complexes can be used as catalysts for the polymerization of methyl methacrylate (MMA) to produce syndiotactic-rich PMMA. Catalytic activities and the degree of syndiotacticity of PMMA have been investigated for various reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号