首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on laser absorption spectroscopy (LAS), we developed a vapor density monitor for controlling the vaporization rate of Yb using a tunable diode laser. The laser source consisted of an extended cavity violet diode laser which has an emission wavelength of 398.8 nm coincident with the Yb absorption transition line, 6s(2) 1S(0)-6s6p 1P(1). The light emitted from the diode laser was transmitted across an atomic vapor column generated by heating the Yb metal, while the laser frequency was scanned across the atomic transition line. By comparing the amount of incident light to the amount of light transmitted after the light passed through the vapor column, the vapor density was determined using the Beer's law. From the experimental results, we demonstrated that the diode-laser-based LAS operated successfully for the real-time monitoring of the Yb vapor density.  相似文献   

2.
A tunable frequency-doubled external-cavity diode laser has been recently developed for atomic absorption spectroscopy in the wavelength range from 320 to 327 nm. The line width of the laser is 0.003 pm. In this work the light source has been applied to the laser absorption spectroscopy of copper at 324.754 nm, cadmium at 326.106 nm, and indium at 325.609 nm and 325.856 nm. The Cu transition was measured in three different environments: in a direct current plasma, a diffusion flame, and in a low-pressure hollow-cathode discharge. Both the plasma and the flame were at atmospheric pressure. The Cd and In transitions were measured in the diffusion flame. A Voigt profile was fit to the measured spectra taking into account the hyperfine structure. From the measured absorption lines spectral reference data for Cu is extracted.  相似文献   

3.
Cooling and trapping of neutral atoms using laser techniques has enabled extensive progress in precise, coherent spectroscopy. In particular, trapping ultracold atoms in optical lattices in a tight confinement regime allows us to perform high‐resolution spectroscopy unaffected by atomic motion. We report on the recent developments of optical lattice atomic clocks that have led to optical spectroscopy coherent at the one second timescale. The lattice clock techniques also open a promising pathway toward trapped ultracold molecules and the possible precision measurement opportunities such molecules offer.  相似文献   

4.
Wavelength modulation diode laser atomic absorption spectrometry is applied to the detection of atomic mercury. Transitions from metastable energy levels highly populated in a radio-frequency discharge are induced with laser diodes by use of nonlinear techniques. The wavelength of one strong transition at 365.119 nm with a high oscillator strength is obtained by sum frequency generation of two diode lasers. The cold vapor technique is used to transfer ionic into atomic mercury. The mercury in the vapor phase is transported by an argon stream into the discharge tube. From the time-dependent absorption signals detection limits of 100 ng/L are achieved at this state of research.  相似文献   

5.
Wavelength modulation diode laser atomic absorption spectrometry is applied to the detection of atomic mercury. Transitions from metastable energy levels highly populated in a radio-frequency discharge are induced with laser diodes by use of nonlinear techniques. The wavelength of one strong transition at 365.119 nm with a high oscillator strength is obtained by sum frequency generation of two diode lasers. The cold vapor technique is used to transfer ionic into atomic mercury. The mercury in the vapor phase is transported by an argon stream into the discharge tube. From the time-dependent absorption signals detection limits of 100 ng/L are achieved at this state of research.  相似文献   

6.
The concept of using cathodic sputtering to generate atoms for chemical analysis by atomic absorption spectroscopy originated with Alan Walsh in the late 1950s. This article reviews the major developments in sputtering techniques and their application to analytical atomic absorption and fluorescence spectroscopy  相似文献   

7.
The homogeneity of a helium dielectric barrier discharge, working at atmospheric pressure and containing oxygen as contaminant, is assessed by mapping the spatial distribution of oxygen metastable atoms in relation to the uniformity of surface properties. Tunable diode laser absorption spectroscopy is used to monitor the time evolution of the absorption coefficient corresponding to the oxygen metastable atoms on the 35S2 level, as a function of the laser absorbing path, whereas bi-dimensional Abel transform is used to obtain local information on the space distribution of the metastable atoms in the discharge. The radial distribution of the surface properties is investigated using atomic force microscopy, contact angle measurement and X-ray photoelectron spectroscopy. The results show that the oxygen metastables density has complex space–time behavior, and the spatial distribution of the reactive species yields specific radial profile of the surface properties of a polymer film depending on the treatment time.  相似文献   

8.
Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions.  相似文献   

9.
The paper reviews the past 11 years of literature on the application of diode lasers in atomic absorption spectrometry with graphite furnaces (GF), plasmas and flames as atomizers. Experimental arrangements and techniques for powerful absorption measurements as well as the theoretical background are covered. The analytical possibilities of high-resolution spectroscopy, including Doppler-free techniques for isotope selective measurements and isotope dilution analysis are discussed and various applications of element-selective detection by diode laser atomic absorption in combination with separation techniques, such as liquid (LC) and gas chromatography (GC), and with laser ablation of solid samples, are presented.  相似文献   

10.
Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.  相似文献   

11.
Methyl iodide photolysis at 193 nm has been studied through probing the I((2)P(1/2)-(2)P(3/2)) transition in the atomic iodine photofragment using diode laser spectroscopy. The I((2)P(1/2)) quantum yield has been determined through two different diode laser techniques and then compared. Frequency-modulated diode laser based absorption spectroscopy was used to extract nascent Doppler lineshapes from which an I((2)P(1/2)) quantum yield of unity is inferred. However when diode laser gain/absorption measurements were made, an I((2)P(1/2)) quantum yield of 0.68 ± 0.04 was found. The reason for this discrepancy is shown to lie in the diode laser gain/absorption method. Molecular iodine is found to be formed during the experiment via atomic iodine recombination and then in turn dissociates to produce both I((2)P(1/2)) and I((2)P(3/2)), thus distorting the returned quantum yield. This conclusion is supported both by the reduction of the I((2)P(1/2)) quantum yield with number of photolysis laser shots when measured using this technique and by the presence of fluoresence which is shown to have excited-state lifetimes and quenching rates that are consistent with those previously measured for the D and D' states of molecular iodine.  相似文献   

12.
Laser atomic absorption spectroscopy applying semiconductor diode lasers   总被引:1,自引:0,他引:1  
The application of tunable single mode semiconductor diode lasers in atomic absorption spectroscopy is discussed in general. The use of several diode lasers, periodical modulation of the laser powers and Fourier analysis of the absorption signals allow background-corrected multi-element atomic absorption spectroscopy with extended dynamic range and internal standardization. This is demonstrated by the simultaneous determination of rubidium and barium in aqueous solutions with a commercial graphite tube atomizer.  相似文献   

13.
Saturation spectroscopy is frequently used to obtain sub-Doppler measurement of atomic and molecular transitions. Optical resonant cavities can be used to enhance the effective absorption path length, and the laser power inside the cavity as well to saturate very weak ro-vibrational transitions of molecules. Three different cavity-enhanced methods, cavity enhanced absorption spectroscopy, cavity ring-down spectroscopy, and noise-immune cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS), were compared by measuring the Lamb dip of a C2H2 line at 1.4 μm using a cavity with a finesse of 120000. The center of the line was determined by different cavity-enhanced methods, each giving a sub-kHz (δv/v≈10-12) statistical uncertainty. The sensitivity and precision of different methods were analyzed and compared. As demonstrated in this study, the NICE-OHMS method is the most sensitive one, but more investigation on the systematic uncertainty is necessary before its application in metrology studies toward a sub-kHz accuracy.  相似文献   

14.
Strategies to produce an ultracold sample of carbon atoms are explored and assessed with the help of quantum chemistry. After a brief discussion of the experimental difficulties using conventional methods, two strategies are investigated. The first attempts to exploit charge exchange reactions between ultracold metal atoms and sympathetically cooled C(+) ions. Ab initio calculations including electron correlation have been conducted on the molecular ions [LiC](+) and [BeC](+) to determine whether alkali or alkaline earth metals are a suitable buffer gas for the formation of C atoms but strong spontaneous radiative charge exchange ensure they are not ideal. The second technique involves the stimulated production of ultracold C atoms from a gas of laser cooled carbides. Calculations on LiC suggest that the alkali carbides are not suitable but the CH radical is a possible laser cooling candidate thanks to very favourable Frank-Condon factors. A scheme based on a four pulse STIRAP excitation pathway to a Feshbach resonance is outlined for the production of atomic fragments with near zero centre of mass velocity.  相似文献   

15.
The results of designing multipurpose high-sensitive photo-acoustic (PA) detectors and their application to high-resolution diode laser spectroscopy of molecular gases, gas analysis, and aerosol absorption measurements are summarized in this paper. The hardware and software of the diode laser spectrometer with a Helmholtz resonant PA detector providing an absorption sensitivity limit of better than 10(-7)Wm(-1)Hz(-1/2) are described. A procedure is proposed for an experiment involving the measurements of the rotational structure of hot vibrational bands of molecules. The results of the application of the nonresonant PA cell with temporal resolution of signals to measurements of weak nonresonant absorption of gases and soot aerosols are presented, and the possibility of creating a broad-band PA laser diode aerosol-meter is discussed.  相似文献   

16.
采用密度泛函理论(DFT)方法, 在TZP基组水平下计算C62及其吡啶衍生物几何与电子结构, 在全优化构型基础上, 采用TD-DFT方法对其低激发态进行计算, 预测其电子吸收光谱. 结果表明, 四种异构体的电子光谱中, 特征吸收来自C62内部的跃迁贡献, 也包括取代基到C62的电子转移. 取代基中N原子位置对490 nm左右吸收带的强度有影响, 两种顺式结构表现较为明显, 而两种反式结构衍生物光谱特征基本相同.  相似文献   

17.
The continuous absorption spectrum of molecular bromine has been examined using laser induced photodissociation spectroscopy. In this technique, Br2 molecules are photolyzed using a flashlamp-pumped dye laser; the atomic products of the dissociation are then monitored by time-resolved resonance absorption spectroscopy in the vacuum ultraviolet. The relative absorptivities for the transitions B3Πo+u ← X1Σ+g and 1Π1u ← X1Σ+g have been obtained at 18350, 21010 and 22125 cm−1.  相似文献   

18.
The paper describes an attempt to place atomic absorption spectroscopy on an absolute basis. Both the theoretical and experimental aspects of the problem are considered.

The study is based upon the construction of a precision burner which provides a homogeneous working zone of definite size into which the atoms to be studied are introduced. Experimental results obtained by means of this burner are used as a guide in formulating a mathematical model of the absorption process.

It is suggested that a model based upon the Voigt equation will suffice to explain the qualitative and quantitative results from an atomic absorption experiment. The extent to which inorganic compounds are dissociated in a flame, the degree of pressure broadening of an absorption line and the characteristics of the emission line from the source constitute the major unknown factors in the application of the theory.  相似文献   


19.
Vibrational spectra of vapor-phase 1,2-ethanedithiol and 2-mercaptoethanol were recorded to investigate weak intramolecular interactions. The spectra were recorded with conventional absorption spectroscopy and laser photoacoustic spectroscopy in the 2000-11,000 cm(-1) region. The room temperature spectra of each molecule are complicated by contributions from several conformers. Anharmonic oscillator local-mode calculations of the OH- and SH-stretching transitions have been performed to facilitate assignment of the different conformers in the spectra. We observe evidence of hydrogen-bond-like interactions from OH to S, but not from SH to O or S. The OH to S intramolecular interaction in 2-mercaptoethanol is weak and comparable to that found in the OH to O interaction in ethylene glycol.  相似文献   

20.
A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号