首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

2.
Localized 1H NMR spectroscopy using the 90°−t1−180°−t1+t2−180°−t2−Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t1 and t2. The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t1=t2) at an echo time of 2/J (290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX3 spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3, …, we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.  相似文献   

3.
A novel implementation of the water flipback technique employing a 45° flip-angle water-selective pulse is presented. The use of this water flipback technique is shown to significantly enhance signal in 3D 15N-edited ROESY in a 20 kDa complex of the vnd/NK-2 homeodomain bound to DNA. The enhancement is seen relative to the same experiment using weak water presaturation during the recovery delay. This enhancement is observed for the signals from both labile and nonlabile protons. ROESY and NOESY pulse sequences with 45° water flipback are presented using both HMQC and HSQC for the 15N dimension. The 45° flipback pulse is followed by a gradient, a water selective 180° pulse, and another gradient to remove quadrature images and crosspeak phase distortion near the water frequency. Radiation damping of the water magnetization during the t1 and t2 evolution periods is suppressed using gradients. Water resonance planes from NOESY–HMQC and NOESY–HSQC spectra show that the HMQC version of the pulse sequences can provide stronger signal for very fast exchanging protons. The HSQC versions of the ROESY and NOESY pulse sequences are designed for the quantitative determination of protein–water crossrelaxation rates, with no water-selective pulses during the mixing time and with phase cycling and other measures for reducing axial artifacts in the water signal.  相似文献   

4.
Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T2 relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90° pulses in a 90°xτ−90°x magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90° pulse and the 180° pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B1 amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.  相似文献   

5.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

6.
In the numerical calculation of f(t), the inverse Laplace transform of F(p), where f(′) = (1/2πi) °cic+i ept F(p)dp, sufficient accuracy is usually obtainable when p3F(p), s > 0, is replaced by an interpolating polynomial in 1/p. From the values of F(p) with F′(p), or with F′(p) and F″(p), for p at points equally spaced on the real axis, an osculatory or hyperosculatory interpolation polynomial for p8F(p), namely L2n−1(x) or L3n−1(x), where x = 1/p, is obtained in barycentric form. Then f(t) is calculated by a Gaussian-type quadrature formula employing complex values of L2n−1 or L3n−1 and instead of psF(p) which may be unknown or more difficult to compute. For calculating L2n−1 and L3n−1, auxiliary coefficients, suitable for economical storage in the program, are given exactly for n = 2(1)11 and n = 2(1)7, furnishing up to 21st and 20th degree accuracy, respectively.  相似文献   

7.
The hydrolysis of VO2+ and the complex with sulfate were studied potentiometrically, spectrophotometrically and calorimetrically, in NaCl aqueous solution (0 < I ≤ 1 mol L− 1) and at t = 25 °C. The formation of two hydrolytic species VO(OH)+ and VO2(OH)22+ and one complex with sulfate was found, with log β = − 5.65 for the reaction VO2+ + H2O = VO(OH)+ + H+, log β = − 7.02 for the reaction 2VO2+ + 2H2O = (VO)2(OH)22+ + 2H+ and log K = 1.73 for VOSO40 species (at I = 0.1 mol L− 1 and t = 25 °C). For these species, using calorimetric data, ΔH and TΔS values were also obtained. By using the above values, interactions of VO2+ with acetate (ac), malonate (mal), succinate (suc), 1,2,3-propanetricarboxylate (tca) and 1,2,3,4-butanetetracarboxylate (btc) ligands were studied potentiometrically and spectrophotometrically. The formation of ML+, ML20 and MLOH0 for ac; ML0, MLH+, ML22− and ML2H for mal; ML0, MLH+ and MLOH for suc; ML and MLH0 for tca and ML2−, MLH and MLH20 for btc were found. Formation constants are reported at I = 0.1 mol L− 1, together with SIT parameters for the dependence on ionic strength. By visible spectrophotometric measurements, λmax and εmax values for the relevant species in solution were determined.  相似文献   

8.
An analysis of data on is presented at beam momenta 600 to 1940 MeV/c. There is evidence for an I=1, JPC=2−+ resonance in ηηπ0 with mass M=1880±20 MeV and width 255±45 MeV, decaying strongly to a2(1320)η; it is too strong to be explained as the high mass tail of π2(1670)→a2(1320)η. There is tentative evidence also for weak decays to f0(1500)π. It makes a natural partner to the η2(1860).  相似文献   

9.
A 90° geometry two-beam coupling configuration was used to investigate the storage properties of 0.03 mol% iron-doped lithium niobate. Photographs of the real image and the subsequently stored images showed partial spatial fading. The maximum diffracted light intensity against recording time rapidly increased, reaching a maximum before gradually decaying. Decay time constants against recording time, trec varied in the same way as the diffracted intensity. Both plots reached a maximum at the same recording time of 3 min (I≈0.8 W cm−2) and 12 min (I≈0.4 W cm−2). Erasure decay times were found to vary with recording time; the best value found in this work was 8.5 min. Erasure curves all displayed an initial oscillatory nature, which may result from oscillation of the diffraction grating via a slow damped oscillation of the constituent electrons.  相似文献   

10.
《Physics letters. [Part B]》2008,660(5):466-470
A partial-wave analysis of the reaction πpηηπp at 18 GeV/c has been performed on a data sample of approximately 4000 events obtained by Brookhaven experiment E852. The JPC=0−+π(1800) state is observed in the a0(980)η and f0(1500)π decay modes. It has a mass of 1876±18±16 MeV/c2 and a width of 221±26±38 MeV/c2. The JPC=2−+π2(1880) meson is observed decaying through a2(1320)η. It has a mass of 1929±24±18 MeV/c2 and a width of 323±87±43 MeV/c2. Both states are potential candidates for non-exotic hybrid mesons.  相似文献   

11.
The analysis of the rotational structure of the high-resolution Fourier transform 000absorption spectrum of the3A2X1A1band system of the “Wulf” transition of the isotopomer16O3of ozone is reported for the first time. With a near pure case (b) coupling model for the upper triplet state, we have assigned a significant portion of the spectrum, mainly theF1(J=N+ 1) andF2(J=N) spin components, primarily in the lower frequency region of the band. The lines corresponding to theF3(J=N− 1) component are weak at lower frequencies and heavily congested in the central and higher frequency regions of the spectrum. Perturbations and predissociation phenomena have reduced the effective lifetime of the metastable3A2state and have also limited the number of transitions included in the least-squares fit of the band. Approximately 100 lines have been assigned in the range from 9100–9550 cm−1. Three rotational, three centrifugal distortion, three spin–rotation, and one spin–spin constant were varied. The geometry of the molecule in the3A2state, as determined from these constants, isr= 1.345 Å and θ = 98.9°, in good agreement withab initioresults.  相似文献   

12.
Magnetically tuned singlet–triplet perturbations in the 41Ã1A2–2131ã3A2 system of thioformaldehyde, found in ortho-rotational states (I = 1, the two hydrogen spins parallel) have been identified as being caused by vibronic spin–orbit coupling. This perturbation mechanism has been confirmed in several avoided crossings observed in this work for para states (I = 0, hydrogen spins antiparallel) which are much stronger. Parametrization of the theory has led to a quantitative understanding of the experimental frequency-field relations, and to an accurate prediction of the rovibrational energies of the triplet state. This in turn permitted the detection of about 100 Doppler-limited 2131ã3A2–00 1A1 rovibronic transitions which led into fine structure states. The combined data was then used to determine a set of rotational, fine, and hyperfine triplet-state parameters, the term value T0(2131ã3A2) = (16 685.385 ± 0.002) cm−1, and the spin–orbit vibronic singlet–triplet coupling constant, WST = (0.0691 ± 0.0016) cm−1. A large number of frequency perturbations observed in the crossings, ranging from 2 to 300 MHz, can be explained with this single parameter.  相似文献   

13.
The neutrino experiment KARMEN is situated at the beam stop neutrino source ISIS which provides νμ's, νe's and from the π+−μ+-decay at rest. The oscillation channels νμ → νe and are investigated with a 56 t liquid scintillation calorimeter. No evidence for oscillations could be found with KARMEN, resulting in 90% CL exclusion limits of sin2(2Θ) < 8.5 · 10−3 ( ) and sin2(2Θ) < 4.0 · 10−2μ → νe) for Δm2 > 100 eV2. In 1996, the experiment has been upgraded by an additional veto counting system with a total coverage of 300 m2. The new system allows the identification of cosmic muons in the vicinity of the detector. Vetoing these muons suppresses energetic neutrons from deep inelastic scattering of muons as well as from μ-capture by a factor of 40. Up to 1996, these neutrons represented the main background for oscillation search. The experimental sensitivity for will be significantly enhanced towards sin2(2Θ) 1.0 · 10−3 after a further measuring period of 2–3 years.  相似文献   

14.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

15.
We have measured the gamma ray activity of a sample of 6189 grams of metallic Neodimium with a germanium detector. From the gamma energy spectrum recorded during almost 6500 hours we extract lower limits for the halflife of the inclusive (0ν + 2ν) ββ decay of 150Nd to the first excited states of 150Sm : t1/2(0+ → 01+ > 1.0·1020, t1/2(O+ → 02+) > 2.0 · 102), t1/2(0+ → 21+) > 9.1 · 1019.  相似文献   

16.
Anexperimental strategy has been developed for measuring multiple dipole–dipole interactions in inorganic compounds using the technique of rotational echo double resonance (REDOR) NMR. Geometry-independent information about the dipole couplings between the observe nuclear species S (arbitrary quantum number) and the heteronuclear species I (spin- ) can be conveniently obtained from the experimental curve of ΔS/S0 versus dipolar evolution time by limiting the analysis to the initial data range 0 < ΔS/S0 < 0.30. Numerical simulations have been carried out on a three-spin system of type SI2 in order to assess the effect of the I–I homonuclear dipole–dipole coupling and the influence of experimental imperfections such as finite pulse length and misadjustments of the 180° pulses applied to the I-spin species. The simulations show further that within the initial data range the effects of such misadjustments can be internally compensated by a modified sequence having an additional 180° pulse on the I channel in the middle of the dipolar evolution periods. Experimental 27Al{31P} REDOR results on the multispin systems Al(PO3)3, AlPO4, [AlPO4]12(C3H7)4NF, and Na3PO4 confirm the general utility of this approach. Thus, for applications to unknown systems the compensation strategy obviates calibration procedures with model compounds.  相似文献   

17.
The transient thiophosphenous fluoride FPS was produced by pyrolysis of 2.5% F2PSPF2 in Ar at 1300–1800°C. High-resolution (≥0.004 cm−1) Fourier transform infrared spectra of the a-type ν1 and b-type ν2 bands, centered respectively at 803.249 and 726.268 cm−1, were measured and fitted to rotational and quartic centrifugal distortion parameters. The millimeter-wave spectrum, essentially b-type, was measured between 300 and 370 GHz in the ground state and in the ν3 excited state for FP32S and in the ground state for FP34S. The frequencies were fitted to a Watson-type A-reduced Hamiltonian up to sextic distortion terms. High level ab initio calculations with large basis sets were performed on FPS and supported the first identification of its infrared and millimeter wave spectra. The calculated anharmonic force field provided precise ab initio rovibrational α constants which were combined with the experimental molecular parameters to determine an accurate equilibrium structure of the molecule: re(PS)=188.86 pm, re(PF)=158.70 pm, θ(FPS)=109.28°. The collision-controlled 1/e lifetime measured in a 10-Pa (1 : 20) F2PSPF2/Ar mixture was 2 s, more than two orders of magnitude larger than that of FPO under the same experimental conditions.  相似文献   

18.
The dye laser excitation spectrum of the vibronic transition of DCF was observed between 17 200 and 17 400 cm−1 with the Doppler-limited resolution. DCF was produced by the reaction of microwave-discharged CF4 with CD3F. The observed spectra, which were found to be nearly free of perturbations, were assigned to 858 transitions of the KaKa = 4−5, 3−4, 2−3, 1−2, 0−1, 1−0, 2−1, 3−2, 3−3, 2−2, 1−1, 0−0, 2−0, and 0−2 subbands, and were analyzed to determine the rotational constants and centrifugal distortion constants for both the and à states. The rotational constants of DCF thus determined were combined with those of HCF to calculate the structural parameters for this molecule: r(C---H) = 1.138 Å, r(C---F) = 1.305 Å, and HCF = 104.1° for the ground state, and r(C---H) = 1.063 Å, r(C---F) = 1.308 Å, and HCF = 123.8° for the excited à state.  相似文献   

19.
《Physics letters. [Part B]》2005,610(3-4):199-211
Energetic neutrons produced in ep collisions at HERA have been studied with the ZEUS detector in the photoproduction regime at a mean photon–proton center-of-mass energy of 220 GeV. The neutrons carry a large fraction 0.64<xL<0.925 of the incoming proton energy, and the four-momentum transfer squared at the proton–neutron vertex is small, |t|<0.425 GeV2. The xL distribution of the neutrons is measured in bins of t. The (1−xL) distributions in the t bins studied satisfy a power law dN/dxL∝(1−xL)a(t), with the powers a(t) following a linear function of t: . This result is consistent with the expectations of pion-exchange models, in which the incoming proton fluctuates to a neutron–pion state, and the electron interacts with the pion.  相似文献   

20.
Given a 1-parameter family of 1-forms γ(t) = γ0+tγ1+ ···+tnψn, consider the condition dγ(t)γ(t) = 0 (of integrability for the annihilated by γ(t) distribution w(t)). We prove that in order that this condition is satisfied for any t it is sufficient that it is satisfied for N = n + 3 different values of t (the corresponding implication for N = 2n + 1 is obvious). In fact we give a stronger result dealing with distributions of higher codimension. This result is related to the so-called Veronese webs and can be applied in the theory of bihamiltonian structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号