首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We demonstrate the formation of highly ordered hexagonal arrays of hybridized polystyrene–poly(4‐vinyl pyridine), PS–PVP, micelles with controllable size by solvent annealing techniques. Because the formation of hybridized micelles was prohibited in the mixture solutions of two different‐sized PS–PVP micelles, single‐layered films with bimodal self‐assemblies of small and large micelles were fabricated from the mixture solutions by adjusting their mixing ratios. When the single‐layered films were solvent annealed by saturated vapor of tetrahydrofuran (THF), on the other hand, small and large PS–PVP micelles in the bimodal self‐assemblies merged together to form hybridized micelles. In addition, the hybridized micelles arranged themselves in a highly ordered hexagonal array, the diameter and center‐to‐center distance of which were precisely adjusted by varying the mixing ratio of small to large micelles in the bimodal assemblies.

  相似文献   


2.
3.
Summary: Novel non‐covalently connected water‐soluble nanoparticles that contain poly(fluorene‐co‐phenylene) with hydroxy‐capped alkoxy side chains (PF3BOH) and poly(acrylic acid) (PAA) have been obtained and characterized. With different proportions of PF3BOH and PAA, the shape and size of the nanoparticles can be regulated. The nanoparticles are quite stable in water with no precipitate being observed after weeks. Transmission electron microscopy and dynamic laser light scattering are used to confirm the morphology of the PF3BOH/PAA nanoparticles. Their optical properties have been investigated and show similar optoelectronic properties to a PF3BOH solid film although they do not undergo aggregation.

TEM images of the nanoparticles obtained upon varying the PAA/PF3BOH content.  相似文献   


4.
Summary: Polyelectrolyte multilayer films of poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) and PAH/poly(sodium 4‐styrenesulfonate) (PSS) based on electrostatic interactions as a driving force are patterned by room‐temperature nanoimprint lithography (RT‐NIL). Under an imprinting pressure of 40 bar for 8 min, well‐defined pattern structures with a line width of 330 nm and a separation of 413 nm are achieved. Meanwhile, hydrogen‐bonding‐directed multilayer films of poly(vinyl pyrrolidone) (PVPON)/poly(methyl acrylic acid) (PMAA) and poly(4‐vinylpyridine)/PAA can also be patterned in a similar way by RT‐NIL. The successful imprinting of these films originates from the high compressibility and fluidity of the layered polymeric films under high pressure.

SEM image of an imprinted (PAH/PAA)*20 film on silicon wafer.  相似文献   


5.
Four linear and four star equimolar terpolymers based on non‐ionic hydrophilic methoxy hexa(ethylene glycol) methacrylate, ionizable hydrophilic 2‐(dimethylamino)ethyl methacrylate and neutral hydrophobic methyl methacrylate were synthesized using group transfer polymerization and investigated in aqueous dilute solutions. It was found that the (ABC)n multi‐arm star terpolymers formed unimolecular micelles comprising three centrosymmetric compartments. The position of each compartment could be determined by the block sequence (ABC, ACB or BAC) at will. On the other hand, the ABC linear counterparts formed loose associates with very low aggregation numbers. It was shown that the polymer architecture (linear versus star) greatly affected the micellization phenomena of the terpolymers in selective media.

  相似文献   


6.
While network‐like assemblies are formed by amphiphilic polyphosphazenes with poly(N‐isopropylacrylamide) and ethyl tryptophan as side groups in aqueous solution, a significant morphology transformation is observed when small molecules that exhibit hydrogen‐bonding interactions with amphiphilic copolymers are introduced during the preparation of polymeric assemblies through a dialysis procedure. Depending on copolymer composition and the content of small molecules introduced, aggregates ranging from general vesicles, high‐genus vesicles, to well‐defined nanospheres can be prepared successfully as clearly evidenced by TEM observation, which suggests this procedure should be a novel approach to prepare composite vesicles.

  相似文献   


7.
A series of well‐defined rod‐coil PAA‐b‐DPS block copolymers, containing Fréchet‐type dendronized polystyrene (DPS) with different generation as a rod‐like hydrophobic block and poly(acrylic acid) (PAA) as a hydrophilic coil were synthesized. The procedure included the following steps: the precursor PMA‐b‐DPS copolymer was prepared through ATRP of Fréchet‐type dendritic styrene macromonomer bearing the first to the third generation (G1–G3), respectively, initiated by poly(methyl acrylate) (PMA‐Br). Then, by converting PMA into PAA by subsequent hydrolysis, the targeted amphiphilic copolymers were obtained. Moreover, by using the rod‐coil amphiphiles as building blocks, large compound micelles and vesicles were formed in a binary solvent mixture of DMF/H2O. Morphological changes in self‐assembly showed dependence on the length of the dendronized block.

  相似文献   


8.
9.
Polycondensation of 1‐(2‐pyrimidinyl)pyrrole with 2,7‐dibromo‐9,9‐dioctylfluorene via Ru‐catalyzed direct arylation gives the corresponding conjugated polymer with a molecular weight of 19 800 in 86% yield. The introduction of directing group, 2‐pyrimidinyl substituent, into the pyrrole monomer induces ortho‐metalation and provides the site‐selective direct arylation polycondensation at the α‐position of pyrrole unit without the protection of β‐position. The removal of 2‐pyrimidinyl substituent on the pyrrole unit proceeds efficiently and results in the enhancement of coplanarity along the main chain of the polymer.

  相似文献   


10.
Complex micelles were obtained from PS‐b‐PNIPAM‐b‐PAA micelles and PEG‐b‐P4VP block copolymers via the strong electrostatic interaction and hydrogen bonding between PAA and P4VP blocks in water. The PS block formed the core and the PAA/P4VP complex shell functioned as a semi‐permeable membrane which could control the permeation of small molecules. Between the core and shell, the large fluid‐filled space that was formed with the thermoresponsive PNIPAM gel could retain the loaded drug for a long period of time. With increasing temperature, the shrinkage of the PNIPAM coils pumped the drug out of the complex micelles. The complex micelles functioned as a contractive “nanopump”, which could potentially be applied as a thermosensitive controlled release system.

  相似文献   


11.
Summary: Reversible pH‐induced swelling of (PAH/PSS) polyelectrolyte microcapsules is accompanied by increased porosity, making them permeable to poly(acrylic acid) (PAA) at pH values higher than 11.2. This pH‐switchable permeability was used to encapsulate the polyanion in alkaline conditions. Relationship between starting PAA concentration in solution and amount finally being encapsulated has been established and can be used further as calibration curve. A desired amount of encapsulated polymer in the picogram range per capsule can be achieved. The loaded capsules were then used as microreactors by forming a complex between the PAA and Ca2+ ions.

General scheme for pH‐induced encapsulation of (PAA) in alkali condition by switching their permeability.  相似文献   


12.
The mean diameter of poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly[2‐(diisopropylamino)ethyl methacrylate] (PDMA‐PDPA) diblock copolymer micelles can be easily adjusted from 27–155 nm (as measured by DLS) by either selective quaternisation of the PDMA block or by adding PDPA homopolymer prior to micellisation; these self‐assembled nanostructures can be shell crosslinked with 1,2‐bis‐(2‐iodoethoxy)ethane and subsequently used as templates for the preparation of silica‐coated nanoparticles and, ultimately, hollow silica nanoparticles.

  相似文献   


13.
Summary: Polyaniline (PANI) nanowires and sub‐micro/nanostructured dendrites are synthesized and immobilized on PP‐g‐PAA film surfaces via routine oxidative polymerization of aniline under different conditions, where grafting poly(acrylic acid) (PAA) served as a template and dopant, and SDS as a surfactant. The immobilized PANI enhances the surface hydrophilicity of the poly(propylene) (PP) films, and a superhydrophilic surface is obtained in this way. The mechanism of forming different morphologies of PANI and of correspondingly obtaining a superhydrophilic surface are briefly discussed.

FESEM image shows the PANI sub‐micro/nanostructured dendrites immobilized on the surfaces of PP films. The modified surface is highly hydrophilic with a water contact angle of 3°.  相似文献   


14.
Direct atom transfer radical polymerization (ATRP) of iso‐butyl methacrylate in microemulsion has been performed successfully for the first time. ATRP was performed at 40 °C with different emulsifier systems: i) the cationic emulsifier n‐tetradecyltrimethylammonium bromide (TTAB); and ii) mixed emulsifier systems based on TTAB and the non‐ionic emulsifiers Emulgen 911 or Emulgen 931. All polymerizations proceeded in a controlled/living fashion, and the microemulsions were transparent with particle diameters less than 15 nm. The emulsifier system TTAB/Emulgen 911 exhibited better control than TTAB only. This is proposed to be caused by complex formation between Emulgen 911 in the organic phase and CuBr2 (the deactivator), thus reducing the extent of exit of CuBr2 to the aqueous phase. The more hydrophilic Emulgen 931 did not lead to improved control.

  相似文献   


15.
Rapidly shrinking poly(N‐isopropyl acrylamide) (PNIPAM) hydrogels are prepared by crosslinking with self‐assembled nanogels that consist of cholesteryl‐ and methacryloyl‐substituted pullulan (CHPMA). The CHPMA nanogel (Rh = 26.4 nm) was used as a crosslinker for a hydrophilic nanodomain. Transmission electron microscopy images of the nanogel‐crosslinked PNIPAM hydrogel reveal a well‐defined nanoporous structure. The nanogel‐crosslinked PNIPAM hydrogel shows rapid shrinking based on its structure. The shrinking half‐time was ≈2 min, which is about 3 400 times faster than that of a PNIPAM hydrogel crosslinked by methylene(bisacrylamide).

  相似文献   


16.
A novel approach is employed to produce core–corona nanospheres, which introduces a stereoregular hydrophilic part to an amphiphilic block copolymer. The resultant morphology is reported using isotactic‐poly(methacrylic acid)‐block‐poly(butyl acrylate). Infrared spectroscopy revealed a supramolecular interaction, and X ray diffraction revealed the crystallization of the outer isotactic‐poly(methacrylic acid) part. The nanostructure, which looks like a nanosized ‘grape’, was formed when nanospheres and nanofibers coexisted simultaneously and partially fused.

  相似文献   


17.
We assess the elastic properties of PS‐b‐PAA vesicle membranes under different pH values by AFM force measurements. We find that based on the shell deformation theory, the values of the estimated apparent Young's modulus of the vesicle membranes decrease as the pH of the solution increases. The onset of the decrease of E coincides with the surface pKa determined from ζ‐potential measurements. This decrease of E at higher pH is attributed to electrostatic repulsion between the deprotonated PAA chains resulting in the thinning of the vesicle membrane.

  相似文献   


18.
A variety of sub‐10 nm nanoparticles are successfully prepared by crosslinking of polystyrene‐b‐poly(1,3‐butadiene) (PS‐b‐PB) and polystyrene‐b‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) block copolymer micelles and inverse micelles. Among them, the core‐crosslinked PS‐b‐PB micelles can self‐assemble into ultrathin (< 10 nm) macroporous (pore size <1 µm) membranes in a facile way, i.e., by simply drop‐coating the particle solution onto a mica surface. No continuous/porous membranes are produced from shell‐crosslinked PS‐b‐PB micelles and both forms of PS‐b‐P4VP micelles. This suggests that the unique structure of the block copolymer precursor, including the very flexible core‐forming block and the glassy corona‐forming block and the specific block length ratio, directly determines the formation of the macroporous membrane.

  相似文献   


19.
Deposition of hole injection layers including a perfluorinated ionomer has been demonstrated using layer‐by‐layer spin self‐assembly for enhanced device efficiency and lifetime in PLEDs. We show that the LBL spin self‐assembled thin films enable to control work functions of indium‐tin oxide anodes by changing the PFI concentration and that a resulting green‐emitting device has an enhanced luminescence efficiency and 18 times longer half lifetime than a device using a conventional HIL. We also fabricate a gradient of energy levels by the LBL self‐assembly of the PFI that results in a work function of 5.74 eV, which can be used to improve carrier injection even for an emitting layer whose ionization potential is over 5.7 eV.

  相似文献   


20.
CdSe nanoparticles stabilized with the amphiphilic diblock copolymer polystyrene‐block‐poly(4‐vinylpyridine) were spread from toluene dispersion on the water surface. Monolayers could be transferred onto solid substrates using the Langmuir‐Blodgett technique. By means of atomic force and scanning electron microscopy highly symmetric ring and disk‐like structures with diameters ranging between 150 nm and 1200 nm were observed.

AFM image of a mixed monolayer of copolymer 12 and CdSe nanoparticles stabilized with polystyrene‐block‐poly(4‐vinylpyridine).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号