首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In four-dimensional N = 4 supersymmetric gauge theory, we obtain an exact metric on the moduli space of quantum vacua and analyze the spectra of BPS states in weak as well as in strong coupling regions. Identifying the hypermultiplet of the dyonic state as a string stretched between D3-brane probe and a 7-brane, we demonstrate that the two hypermultiplets, which become massless at two singularities in supersymmetric theory, correspond to open strings beginning on the D3-brane and ending on the respective 7-brane.  相似文献   

2.
《Nuclear Physics B》1988,303(2):286-304
Some aspects of the moduli space of superconformal field theories are discussed. It is helpful to consider the conformal field theory as a background for propagation of strings and to exploit the space-time interpretation. Using this point of view we show that the metric on the moduli space of N = 4 superconformal field theory with c = 6 is locally that of O(20,4)/O(20) × O(4). We also discover some properties of the moduli space of N = 2 superconformal field theories with c = 9. Particular examples of these conformal field theories are sigma models on four- and six-dimensional Calabi-Yau spaces. Therefore, we can use this technique to learn about the moduli space of these spaces. For c = 6 we recover the known moduli space of K3. Our analysis of the c = 9 system leads to a new coupling in four dimensional supergravity. As a by-product, we prove that gauge couplings cannot depend on the moduli of N = 1 space-time supersymmetric compactifications.  相似文献   

3.
A one-instanton level test is performed for the proposed reparameterisation scheme matching the conjectured exact low energy results and instanton predictions for supersymmetric SU(N) gauge theories with 2N massless fundamental matter hypermultiplets across the entire quantum moduli space. The constants within the scheme which ensure agreement between the exact results and the instanton predictions for general N are derived. This constitutes a non-trivial test of the scheme, which eliminates the discrepancies arising when the two sets of results are compared.  相似文献   

4.
5.
《Nuclear Physics B》1999,537(1-3):344-360
We obtain the Seiberg-Witten geometry for four-dimensional N = 2 gauge theory with gauge group SO(2Nc) (Nc ⩽ 5) with massive spinor and vector hypermultiplets by considering the gauge symmetry breaking in the N = 2 E6 theory with massive fundamental hypermultiplets. In a similar way the Seiberg-Witten geometry is determined for N = 2 SU(Nc) (Nc ⩽ 6) gauge theory with massive antisymmetric and fundamental hypermultiplets. Whenever possible we compare our results expressed in the form of ALE fibrations with those obtained by geometric engineering and brane dynamics, and find a remarkable agreement. We also show that these results are reproduced by using N = 1 confining phase superpotentials.  相似文献   

6.
The study of superconductivity has been undertaken through the breaking of supersymmetric gauge theories which automatically incorporate the condensation of monopoles and dyons leading to confining and superconducting phases. Constructing the effective Lagrangian near a singularity in moduli space for N=2 supersymmetric theory with SU(2) gauge group, it has been shown that when a mass term is added to this Lagrangian, the N=2 Supersymmetry is reduced to N=1 supersymmetry yielding the dyonic condensation which leads to confinement and superconductivity as the consequence of generalized Meissner effect. In the Coulomb phase of N=2 SU(3) Yang–Mills theory the gauge symmetry has been broken down to SU(2)×U(l) and it has been shown that on perturbing it by suitable tree-level superpotential this supersymmetry theory breaks to N=1 SU(2) Yang-Mills theory described by Higgs field in confining phase incorporating superconductivity.  相似文献   

7.
The quantum worldsheet dynamics of vortex strings contains information about the 4d non-Abelian gauge theory in which the string lives. Here I tell this story. The string worldsheet theory is typically some variant of the CPN-1 sigma-model, describing the orientation of the string in a U(N) gauge group. Qualitative parallels between 2d sigma-models and 4d non-Abelian gauge theories have been known since the 1970s. The vortex string provides a quantitative link between the two. In 4d theories with N=2 supersymmetry, the exact BPS spectrum of the worldsheet coincides with the bulk spectrum in 4d. Moreover, by tuning parameters, the CPN-1 sigma-model can be coaxed to flow to an interacting conformal fixed point which is related to the 4d Argyres-Douglas fixed point. For theories with N=1 supersymmetry, the worldsheet theory suffers dynamical supersymmetry breaking and, more interestingly, supersymmetry restoration, in a way which captures the physics of Seiberg’s quantum deformed moduli space.  相似文献   

8.
9.
We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV < m U < 1019 GeV; indeed, we have found a particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model. Received: 29 November 2002 / Published online: 3 March 2003 RID="a" ID="a" e-mail: walter.grimus@univie.ac.at RID="b" ID="b" e-mail: balio@cfif.ist.utl.pt  相似文献   

10.
We study refined and motivic wall-crossing formulas in N=2{{\mathcal N}=2} supersymmetric gauge theories with SU(2) gauge group and N f < 4 matter hypermultiplets in the fundamental representation. Such gauge theories provide an excellent testing ground for the conjecture that “refined = motivic.”  相似文献   

11.
We give a new, elementary proof for the existence of a deconfining transition to a massless (QED) phase in the four-dimensionalU(1) lattice gauge theory and of an intermediate QED phase, accompanied by dynamical restoration of localU(1) invariance, in the four dimensional N models, withN large. Our methods can also be used to prove the existence of a phase transition in theXY model in three or more dimensions, in three- and four-dimensional abelian Higgs models, and in more general models admitting some local, abelian gauge invariance.Work supported in part by the NSF under grant DMR 81-00417  相似文献   

12.
We give the general presciption for calculating the number of moduli of irreducible, stable U(n) holomorphic vector bundles with positive spectral covers over elliptically fibered Calabi–Yau threefolds. Explicit results are presented for Hirzebruch base surfaces B = F r. Vector bundle moduli appear as gauge singlet scalar fields in the effective low-energy actions of heterotic superstrings and heterotic M-theory.  相似文献   

13.
N = 1 supersymmetric gauge theories with global flavor symmetries contain a gauge invariant W-superalgebra which acts on its moduli space of gauge invariants. With adjoint matter, this superalgebra reduces to a graded Lie algebra. When the gauge group is SO(nc), with vector matter, it is a W-algebra, and the primary invariants form one of its representation. The same superalgebra exists in the dual theory, but its construction in terms of the dual fields suggests that duality may be understood in terms of a charge conjugation within the algebra. We extend the analysis to the gauge group E6.  相似文献   

14.
We extend the proposal of Berenstein, Maldacena and Nastase to the Type IIB superstring propagating on a pp-wave over the R 4/Z k orbifold. We show that first-quantized free string theory is described correctly by the large-N, fixed gauge coupling limit of [U(N)] k quiver gauge theory. We propose a precise map between gauge theory operators and string states for both untwisted and twisted sectors. We also compute leading-order perturbative correction to the anomalous dimensions of these operators. The result is in agreement with the value deduced from the string energy spectrum, thus substantiating our proposed operator-state map. Received: 14 March 2002 / Published online: 5 July 2002  相似文献   

15.
Tensor products of quantized tilting modules   总被引:5,自引:0,他引:5  
LetU k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebraL. Assume that the quantum parameter is a root of unity ink of order at least the Coxeter number forL. Also assume that this order is odd and not divisible by 3 if typeG 2 occurs. We demonstrate how one can define a reduced tensor product on the familyF consisting of those finite dimensional simpleU k-modules which are deformations of simpleL and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k,F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups.  相似文献   

16.
We map noncommutative (NC) U(1) gauge theory on ℝ C d ×ℝ NC 2n to U(N→∞) Yang–Mills theory on ℝ C d , where ℝ C d is a d-dimensional commutative spacetime while ℝ NC 2n is a 2n-dimensional NC space. The resulting U(N) Yang–Mills theory on ℝ C d is equivalent to that obtained by the dimensional reduction of (d+2n)-dimensional U(N) Yang–Mills theory onto ℝ C d . We show that the gauge-Higgs system (A μ ,Φ a ) in the U(N→∞) Yang–Mills theory on ℝ C d leads to an emergent geometry in the (d+2n)-dimensional spacetime whose metric was determined by Ward a long time ago. In particular, the 10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry arising from the 4-dimensional N=4{\mathcal{N}}=4 vector multiplet in the AdS/CFT duality. We further elucidate the emergent gravity by showing that the gauge-Higgs system (A μ ,Φ a ) in half-BPS configurations describes self-dual Einstein gravity.  相似文献   

17.
The partition function of N=6{\mathcal{N}=6} supersymmetric Chern–Simons-matter theory (known as ABJM theory) on \mathbbS3{\mathbb{S}^3} , as well as certain Wilson loop observables, are captured by a zero dimensional super-matrix model. This super–matrix model is closely related to a matrix model describing topological Chern–Simons theory on a lens space. We explore further these recent observations and extract more exact results in ABJM theory from the matrix model. In particular we calculate the planar free energy, which matches at strong coupling the classical IIA supergravity action on AdS4×\mathbbC\mathbbP3{{\rm AdS}_4\times\mathbb{C}\mathbb{P}^3} and gives the correct N 3/2 scaling for the number of degrees of freedom of the M2 brane theory. Furthermore we find contributions coming from world-sheet instanton corrections in \mathbbC\mathbbP3{\mathbb{C}\mathbb{P}^3} . We also calculate non-planar corrections, both to the free energy and to the Wilson loop expectation values. This matrix model appears also in the study of topological strings on a toric Calabi–Yau manifold, and an intriguing connection arises between the space of couplings of the planar ABJM theory and the moduli space of this Calabi–Yau. In particular it suggests that, in addition to the usual perturbative and strong coupling (AdS) expansions, a third natural expansion locus is the line where one of the two ’t Hooft couplings vanishes and the other is finite. This is the conifold locus of the Calabi–Yau, and leads to an expansion around topological Chern–Simons theory. We present some explicit results for the partition function and Wilson loop observables around this locus.  相似文献   

18.
19.
We consider the renormalization of the twist two, dimension four gauge invariant operator Oμν(1) = − FμσFνσgμν 0. By using the general theory of renormalization of gauge invariant operators, we find the gauge noninvariant operator O(2) with which it mixes. We construct a finite combination of O(1) and O(2) and show that it is an acceptable energy momentum tensor for gauge theories. We compare our energy momentum tensor with that constructed by Freedman, Muzinich, and Weinberg.  相似文献   

20.
Starting with the definition of quaternion gauge theory, we have undertaken the study of SU(2) e ×SU(2) m ×U(1) e ×U(1) m in terms of the simultaneous existence of electric and magnetic charges along with their Yang-Mills counterparts. As such, we have developed the gauge theory in terms of four coupling constants associated with four-gauge symmetry SU(2) e ×SU(2) m ×U(1) e ×U(1) m . Accordingly, we have made an attempt to obtain the abelian and non-Abelian gauge structures for the particles carrying simultaneously the electric and magnetic charges (namely dyons). Starting from the Lagrangian density of two SU(2)×U(1) gauge theories responsible for the existence of electric and magnetic charges, we have discussed the consistent theory of spontaneous symmetry breaking and Higgs mechanism in order to generate the masses. From the symmetry breaking, we have generated the two electromagnetic fields, the two massive vector W ± and Z 0 bosons fields and the Higgs scalar fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号