首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Abstract— The effect of external calcium level, calcium ionophore A23187 and red light on the circadian rhythm of Robinia pseudoacacia leaflet movements has been studied. Fifteen minute red light pulses shifted the phase of leaflet rhythmic movement with a phase-response curve type 0. Maximum advances and delays (about 10 h and 8 h, respectively) were obtained between circadian time (CT) 10 and CT 12 at the end of a subjective day. An almost null effect was obtained at the end of a subjective night. Phytochrome is the photoreceptor involved in phase shifting since this effect of red light is reversed by 5 min of far red light. Two hour pulses of external calcium, applied as CaCl2 (10 m M ), and 2 h pulses of calcium ionophore A23187 (10–50 μM) also shifted the phase of leaflet circadian movement and caused the same type of phase-response curve, with maximum advances and delays at the same time as those produced by red light. Two hour pulses of an external calcium chelator, EGTA (5 m M ), and a calcium channel blocker, LaCl3 (10–50 m M ), damped the circadian rhythm or did not change the phase when they were applied at lower concentration. These results indicate that phytochrome could control the circadian oscillator, which drives Robinia leaflet movements by increasing the intracellular calcium concentration.  相似文献   

2.
Abstract— Sparrows ( Passer domesticus ) are day-active birds which exhibit circadian rhythms of perch-hopping activity. The phases of sparrow's circadian rhythms were studied following single 4 h light pulses, single 4 h dark pulses, doublet treatments of light and dark pulses, and a 10 h light pulse.
The sparrows exhibited a phase response curve to 4 h light pulses with maximum phase advances (3.8 h) at CT20 and maximum phase delays(–1.3 h) at CT16. The sparrows also displayed a phase response curve to dark pulses with maximum phase advances (2.2 h) at CT16 and maximum phase delays at CTO(–0.7 h).
The remaining pulses were imposed during the subjective dark-time. The 10 h pulse beginning 1 h after lights-out produced a 2.2 h phase shift. The doublet of 2 h pulses that were the "skeleton" of the 10 h pulse produced a 2.5 h phase shift. The early 2 h pulse, applied by itself resulted in a -0.4 h delay; the late 2 h pulse applied singly produced a 3.1 h advance. When an early 3 h dark pulse was imposed together with a late light pulse, the phase was advanced 3.6 h; singly the pulses produced 1.8 h and 2.7 h advances.  相似文献   

3.
Abstract— Using excise sections of oat first-internodes, a dual effect of blue light can be demonstrated on elongation when the sections are first irradiated in distilled H2O, then incubated with gibberellic acid (GA). At low light energies (230 ergs/cm2 per sec, for 2 min), a pretreatment with blue light enhances the GA effect above the elongation it can produce in the dark. At high energies (650 ergs/cm2/sec for 45 min), the same wavelengths cause an inhibition of the GA-induced elongation. An action spectrum for the two effects show a maximum near 435 mμ in both cases. Neither light effect is visible when indoyl-3-acetic acid is used instead of GA. Several physiological effects distinguish the two blue effects. The promotive effect is most marked in the young regions of the mesocotyl, whereas the maximum inhibitive effect is located in slightly older tissues. Time-course experiments showed that the promotive effect is partly due to an extension of the duration of elongation. The inhibitory effect is only temporary and vanishes about 30 hr after the beginning of the experiment. The promotive effect of blue light resembles the effect of far-red light, but the former can be observed with gibberellins A2, A4, A5, A6 and A7 which are practically inactive after an irradiation with far-red light. The inhibitory effect of blue light is different from the red-light effect as shown by the time-course experiments.  相似文献   

4.
Two new mutants of Neurospora craasa , designated hth-1 and hth-2 , have been isolated which allow clear expression of the circadian conidiation rhythm at high temperature (36°C). Both strains showed single-gene segregation and produced similar phenotypes but mapped to different genetic loci. These mutants allowed an analysis of the effect of temperature on (1) light-induced phase-shifting of the circadian rhythm, (2) period length of rhythm, and (3) growth rate. The amplitude of the phase response curve to light was drastically reduced as the temperature was increased from 25°C to 34°C. Phase advances were decreased more than phase delays. As previously reported (Sargent et al. , 1966), the period length of the rhythm is temperature-compensated below 30°C ( Q 10˜ 1) but not well-compensated above 30°C ( Q 10 1.3–1.7). The decrease in amplitude of the light phase response curve occurred in both temperature ranges. Furthermore, the Q 10 value was lowered by addition of yeast extract in the high temperature range but not in the low range. Q 10 values for growth rate also differed in these strains both in the low temperature range (25–30°C) and the high temperature range (30–34°C).  相似文献   

5.
Abstract— It is generally accepted that phytochrome influences the photoperiodic induction of flowering through its interaction with the circadian clock mechanism. We have attempted to separate the effects of phytochrome on the clock mechanism from those that mediate flowering directly by examining a number of responses that are unrelated to flowering but are also regulated by the circadian clock. Gas exchange measurements of both CO2 and H20 vapor were monitored under light conditions (200 μmol m 2 s−1) where the addition of far-red energy is required for the maximal promotion of flowering. In addition, photosynthetic capacity and maximal transpiration rates were measured in plants grown under continuous dim (20 μmol m−2 S') light, with or without supplemental far-red, by exposing them briefly to saturating fluxes (1000 μmol m−2 s-l) of light. Net CO2 fixation was very weakly rhythmic in plants grown under both high and low light and this weak oscillation was completely suppressed by far-red light. Far-red also suppressed the rhythm in transpiration under high light, but the rhythm was immediately reinstated when the far-red light was removed. The phase of this rhythm was also reset with the next peak always occurring15–18 h after the far-red was turned off. When grown under dim light, the transpiration rhythm was not suppressed and the amplitude of the oscillation was more than doubled. Far-red light appears to interact with the rhythm in transpiration in a manner suggesting that the stomatal rhythm may be coupled to the same clock oscillator that regulates the flowering rhythm.  相似文献   

6.
Abstract-Phytochrome regulates the unrolling of primary leaf sections from 8-day-old dark-grown wheat ( Triticum aeslivum L. cv. Arminda) seedlings. Red light (R)-stimulated unrolling of leaf sections pretreated in 1 m M ethylene-bis-(β-aminoethylether)- N,N,N',N' -tetraacetic acid (EGTA) if 1 m M CaCl2 was added during a 30 min treatment period including and following irradiation. Nifedipine at 1 μ M (a Ca2+-channel antagonist) applied 10 min before R prevented the R stimulation of leaf unrolling. The Ca2+-channel agonist Bay K-8644 (1 μ M ) and acetylcholine (ACh, 1 mY M ) stimulated unrolling of leaf sections prewashed in EGTA in darkness, if 1 m M CaCl2 was present in the medium during a 30 min treatment period. Acetylcholine also induced leaf unrolling in the absence of Ca2+ when 100 μ M NaCl was present in the medium. Apart from ACh, only carbamylcholine out of the choline derivatives tested was active in induction of leaf unrolling in the presence of 1 m M Ca2+. The ACh receptor antagonists, atropine (10 μ M ) AND D-tubocurarine (10 μ M ), nullified the ACh-induced Ca2+- and Na+-dependent leaf unrolling, respectively. Muscarine and nicotine, agonists of ACh, at 1 μ M stimulated leaf unrolling in the presence of Ca2+ and Na+, respectively. The ACh-induced Ca2+-dependent leaf unrolling was reduced by 1 μ M Nifedipine, 10 μ M Li+ and 10 μ M "calmodulin" inhibitor, trifluoperazine (TFP), whereas only TFP was active in the reduction of the Na+-dependent ACh-induced leaf unrolling response. It is proposed that leaf unrolling of dark-grown primary wheat leaves can be regulated by phytochrome and by activation of two different types of ACh receptors.  相似文献   

7.
Abstract— Irradiation of the Pr form of phytochrome in the presence of flavin mononucleotide (FMN) which absorbs the actinic blue light yields Pfr at a rate greater than that in the absence of FMN. The actinic blue light absorbed by FMN enhances the phototransformation of Pr via the energy transfer from the former to the latter. On the other hand, the photoreversion of Pfr was inhibited by the presence of FMN when illuminated with blue light. The lack of photo-enhancement of the reversion of Pr, by blue light suggests that the Pfr chromophore (acceptor) transition dipole is virtually perpendicular to the FMN transition dipole, as the result of a chromophore reorientation in the Pr→Pfr phototransformation. The fact that blue light absorbed by flavin preferentially enhances the forward phototransformation of phytochrome while inhibiting the reversion may have an important implication in the high irradiance responses in plants in terms of a preferential accumulation of Pfr by blue light excitation.  相似文献   

8.
Abstract— The back photoreaction from the M(412nm) intermediate in the photocycle of light-adapted bacteriorhodopsin, BRLA(570 nm), is studied using pulsed laser excitation. The decay of a primarily produced species, MP, regenerates BRLA(570nm) in a process characterized by a half life of 200 ns at 25°C. The absorption maximum of MP is blue shifted (Λmax≃ 395 nm) relative to that of M(412nm). The primary photochemical step, M(412nm) → MP, is attributed to a conformational change in the polyene residue. The energy and entropy of activation of the subsequent MP→ BRLA (570 nm) relaxation are reported and discussed.  相似文献   

9.
Abstract The rate of hypocotyl longitudinal growth in seedlings of Sesamum indicum L. is strongly inhibited by continuous blue light (cBL)† and slightly by continuous far-red light while continuous red light (cRL) or red light pulses are hardly effective from 60 h after sowing onwards. Between 36 and 60 h after sowing the growth rate responds to red light pulses the effect of which is fully reversible by long wavelength far-red light. When seedlings are kept in cBL for 3 days and then treated with red light hypocotyl growth rate responds strongly. However, RL effectiveness decreases with time after transfer from BL to RL. BL → darkness transfer experiments with different levels of Pfr established at the beginning of darkness show that after a BL pretreatment phytochrome (Pfr) alone is capable of fully controlling growth rate. When white light (WL) is given no BL effect is detectable in weak WL. Only high light fluxes maintain a typical BL growth rate. At medium WL fluxes elongation rate returns gradually to the dark rate. The simplest explanation of the data is that light absorbed by a separate BL photoreceptor is necessary to maintain responsivity to Pfr. With increasing age of the seedlings the requirement for BL increases strongly. On the other hand, brief light pulses—given to demonstrate photoreversibility of phytochrome—remain equally effective provided that responsivity to Pfr exists.  相似文献   

10.
Abstract— The responses of stomata from Paphiopedilum harrisianum , Orchidaceae, to light and CO2 were studied in epidermal peels. Stomatal opening under red light was indistinguishable from that in darkness, whereas blue light promoted opening above dark levels. The ineffectiveness of red light in causing stomatal opening was confirmed in the presence of 100 μ M KCN; average apertures in both darkness and red light were 53% of those measured in the absence of the inhibitor, whereas under blue irradiation, the KCN inhibition was only 30%, with average apertures two-fold of those measured under red light or darkness. Fluence rate response curves under blue light were typical of a single photoreceptor; removal of CO2 increased aperture values without a significant light-CO2 interaction. The lack of a stomatal red light response contrasts with results obtained in species with chlorophyllous stomata in which red light consistently causes stomatal opening, and suggests that the previously reported red light responses in stomata from intact Paphiopedilum leaves resulted from indirect effects, such as depletion of intercellular CO2 by mesophyll photosynthesis. In isolation, Paphiopedilum stomata appear to rely on a blue light photosystem for their responses to light and fail to open under red light because of their lack of guard cell chloroplasts.  相似文献   

11.
-The luminescence at 1.27 μm from the 3→→1δg transition of the oxygen molecule has been detected from a variety of liquid systems. A Q-switched laser delivering pulses of 532 nm light was the excitation source, a germanium photodiode was the detector and substituted porphyrins were used as photosensitizers. Protio- and deutero- forms of several solvents were studied and the singlet oxygen lifetimes determined directly agreed well with published values. Tδ in D2O was found to be 55 μs and, by extrapolation from a series of H2O - D2O mixtures, a value of 3.3 μs was obtained for Tδ in H2O. The technique was shown to be useful in measuring Tδ values in several microheterogeneous systems such as surfactant micelles, vesicles and human serum albumin.  相似文献   

12.
In studies of the bioluminescence of 11 species of phengodid collected in central and southeast Brazil, we have found that: (1) their lateral lanterns emit light in the yellow-green region (λmax= 540–580 nm) and the head lantern color is shifted to the red region ( λmax= 565–620 nm), (2) the luciferins of both types of lanterns are identical to that of lampyrids and elaterids and (3) the luciferase physicochemical properties are also similar to those of lampyrids and elaterids (optimum pH ca 8.1; Km(ATP) = 260–370 μM , Kμ(luciferin) = 170–400 μM; molecular weight ca 60 kDa; apparent activation energy of in vitro bioluminescence ca 58 kJ/mol). Thus the bioluminescence system of phengodids appears to be essentially the same as that of lampyrids and elaterids. The different bioluminescence colors of the lanterns of Phrixothrix species (λhead= 600–620 nm; λlateral= 535–565 nm) and other phengodid species are probably elicited by the presence of luciferase isoenzymes, as occurs in the case of elaterid prothoracic and abdominal lanterns.  相似文献   

13.
Chlorophyll synthesis is stimulated by red light pulses in the green alga Ulva rigida C. Aghard. Chlorophyll synthesis in darkness is greater after longer red light pulses (30 min) than after shorter red light pulses (5 min). Chlorophyll synthesis was higher after red light pulses of 14 Wm-2 fluence rate than after those of 7 Wm-2. The effect of red light showed some far-red reversibility. The reversion by far-red light was higher after red light pulses of 4 min than after those of 30 min. These results indicate the existence of a rapid induction of chlorophyll synthesis during the red light pulses and a fast escape from photoreversibility. The percentage of reversion is also affected by the fluence rate of the light pulses. The reversion was reduced by about 15% when the photon fluence rate was increased from 7 to 14 Wm-2. Reversion was also observed when red and far-red light pulses were applied successively. Thus, phytochrome or a phytochrome-like photoreceptor could be involved in the induction of chlorophyll synthesis in Ulva rigida.  相似文献   

14.
DEPENDENCE OF Pfr/Ptot-RATIOS ON LIGHT QUALITY and LIGHT QUANTITY   总被引:2,自引:0,他引:2  
Abstract— Not only the spectral distribution of the light source determines the relative proportion of phytochrome in the Pfr(Pr) form, the Pfr/Ptot-ratio also depends strongly on the fluence rate of the irradiation. This dependence has been observed in the cotyledons of etiolated mustard seedlings for blue light of fluence rates below 20 Wm-2. It has also been observed for white light and seems to be a characteristic of the phytochrome system resulting from the involvement of phytochrome thermal reactions as well as Pr Pfr photoconversions. The fluence rate dependence of Pfr/Ptot-ratios can be used to analyze the characteristic transformations of the phytochrome system. Phototransformations together with a fast thermal transformation (τ½⋍ 3min) are consistent with the results obtained for blue and white light.  相似文献   

15.
Abstract— In the cotyledons of the mustard seedling Sinapis alba L. the duration of the Shibata shift can be greatly shortened by a pretreatment with light pulses prior to the protochlorophyllide– chloro-phyllide a photoconversion. It was shown that the light pulses act through photochrome (P fr ). Since reversibility of a red light pulse induction by a far-red light pulse is rapidly lost (within 2 min) it is concluded that at least the initial action of Pfr occurs rapidly in this response. On the other hand, the effect of a red light pulse on the rate of protochlorophyll regeneration in the mustard seedling cotyledons is fully reversible by a far-red light pulse for more than 5 min. It is concluded that control of protochlorophyll regeneration and control of the Shibata shift by phytochrome cannot be consequences of the same initial action of Pfr Apparently Pfr controls both phenomena independently.  相似文献   

16.
Abstract— We report the detection of a weak near-infrared light emission originating from 8 nM singlet molecular oxygen (1O2) produced in a mixture of 1 m M hypochlorite (OC1-) and 8 n M hydrogen peroxide (H2O2). The measurements were made with a highly sensitive detection system for ultraweak light emission in the 1.0-1.5 μm wavelength region. The emission intensity exhibited linear dependence for H2O2 concentrations in the range of 8-670 n M . The mixture containing a lower concentration (33 μ M ) of OCl- pseudocontinuously emitted near-infrared light for 5 s. The rate constant for 1O2 production obtained from the kinetic analysis agrees with that previously reported. Our results demonstrate the possibility of measuring very low concentrations of 1O2 in a OCi-/H2O2 mixture as well as 1O2 production in intact living systems.  相似文献   

17.
The functional transitions of the membrane-bound chloroplast ATPase (CF1) as influenced by low ADP and uncoupler concentrations are investigated by measurements of initial and steady-state ATP hyrolysis and concomitant membrane energization. Following activation of latent ATP hydrolysis by light in the presence of dithioerythritol, the resulting steady-state ATP hydrolysis depends on the dark-period ( t d) bteween light activation and ATP addition. ADP, added during t d, inhibits this activity ( K i about 2 μ M ) and induces a lag in the onset of ATP hydrolysis. The extent of membrane energization as monitored by an aminoacridine fluorescent probe is proportional to the ATPase activity.
An uncoupler amplifies the inhibitory effect of ADP if added during f d, whereas it induces the normal stimulation of ATP hydrolysis in the absence of ADP. The ADP effect, which is different from product inhibition, is interpreted as a conformational interaction with CF1 causing an increase of the energy threshold required for the inactive → active transition of the CF1 molecules. These results are in harmony with currently proposed models of CF1 regulation by adenine nucleotides based on binding studies.
The inactive → active transition of CF1 conformation is investigated by analysis of the lag in the onset of ATP hydrolysis at different ADP concentrations and by means of varied light pulses and single-turnover flashes, using the electric potential indicating absorption change at 515 nm as a probe for the onset of ATP hydrolysis. The half-time of the process leading to fully (re)activated ATP hydrolysis is about 0.25 s. The ATP-dependent flash-induced inactive → active transition occurs within a few turnovers of electron flow.  相似文献   

18.
Abstract— Delayed light emission emanating from preilluminated chloroplasts can be perturbed with pulsed DC electric fields (200–4000 V cm-1), The perturbation produces a strong stimulation of chlorophyll luminescence. During the field perturbation the stimulated emission rises to a maximum, typically within 100μs. and then decays. Two kinetic components, R (rapid) and S (slow)†, are distinguished on the basis of their rise and decay times and their field-dependence. The R component increases exponentially at high fields, decays within 100–300μs during the field pulse and collapses with t 1/2= 15 μs at the end of the field pulse. The S component occurs at low fields, exhibits near saturation at 500 V cm-1, decays with t 1/2 about 3 ms during the field pulse, and collapses with t 1/2= 38μs at the end of the field pulse. Studies using inhibitors, ionophores, electron donors and electron acceptors associate the R component with ion transport processes. The relation to electron transport associated with Photosystem II is discussed.  相似文献   

19.
Abstract— The Kubelka-Munk theory for diffuse reflectance has been applied to a quantitative study of photochromism in the crystalline state. For three systems investigated it was found possible to assign first order rate constants to the thermal relaxation process and estimate the pre-exponential factor A and the activation energy Ea in Arrhenius equation. For the fading of the red photocolored form, Λmax=490 mμ, of benzaldehyde phenylhydrazone A = 1.4×108 min-1 and Ea= 15.7 kcal mole-1. For the fading of the blue photocolored form, Λmax=590 mμ, of 2–(2,4-dinitrobenzyl)pyridine A= 5×1014 min-1 Ea =23.3 kcal mole-1, Cinnamaldehyde semicarbazone showing 'reversed phototropy' has a photoactivated state, Λmax=400 mμ, which in dark is transformed into a strongly absorbing yellow species, Λmax= 430 mμ with A = 14 × 1010 min-1 and Ea= 18.7 kcal mole-1.  相似文献   

20.
Abstract
The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 μmol m-2s-1), the response to 450-nm light is characterized by a single maximum at about 9 μmol m-2. At higher fluence rate (0.4 μmol m-2s-1), the response shows two maxima, at 4.5 and 9 μmol m-2. The response to 510-nm light shows a single maximum at 4.5 μmol m-2. Unilateral preirradiation with high fluence rate (25 μmol m-2s-1) 510-nm light eliminates the maximum at 4.5 μmol m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 μmol m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号