首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The use of sulfonated cation-exchange resins based on hypercrosslinked polystyrene (HCPS) and highly cross-linked polystyrene–divinylbenzene (80% divinylbenzene) for the separation of organic acids was studied. The influence of the concentration of the eluent, temperature of the chromatographic column, and concentration of acetonitrile in the eluent on the retention of aliphatic carboxylic acids in ion-exclusion chromatography was examined. The optimal separation of organic acids on the HCPS sorbent is attained at 65°C with the use of 10 mM H2SO4with or without acetonitrile addition as the eluent. The sorbent based on HCPS in combination with spectrophotometric detection is promising for the determination of organic acids and other weakly ionized and neutral compounds with low molecular mass in samples of complex composition (juices and beer).  相似文献   

2.
Ion exchange was made on MCM-22 and MCM-49 zeolites with different Si/Al molar ratios, with Li+, Na+, K+, and Cs+ ions and the study of the influence of alkali metal cations on CO2 adsorption properties was performed. The degree of ion-exchange decreased for larger cations (Cs+) apparently due to steric hindrances. The exchange with different cations led to a decrease in the surface area and the micropore volume. Our study shows that the adsorption capacity of the tested zeolites depends significantly on the nature and the concentration of the charge-compensating cations. The highest CO2 adsorption capacity was obtained on the MWW zeolites with the lowest Si/Al molar ratio and the Li+ or K+ cations.  相似文献   

3.
A hybrid monolithic column with sulfonate functionality was successfully prepared for the simultaneous separation of common inorganic cations in ion‐exchange chromatographic mode through a simple and easy single‐step preparation method. The strong cation‐exchange moieties were provided directly from allylsulfonate, which worked as an organic monomer in the single‐step reaction. Inorganic cations (Li+, Na+, K+, NH4+, Cs+, Rb+, Mg2+, Ca2+, and Sr2+) were separated satisfactorily by using CuSO4 as the eluent with indirect UV detection. The allysulfonate hybrid monolith showed a better performance in terms of speed and pressure drop than the capillary packed column. The number of theoretical plates achieved was 19 017 plates/m (in the case of NH4+ as the analyte). The relative standard deviations (n = 6) of both retention time and peak height were less than 1.96% for all the analyte cations. The allysulfonate hybrid monolithic column was successfully applied for the rapid and simultaneous separation of inorganic cations in groundwater and the effluent of onsite domestic wastewater treatment system.  相似文献   

4.
The sorption of univalent, bivalent and trivalent ions has been studied on chromium ferrocyanide gel. The studies reveal a high sorption capacity for Cs+, Tl+, Ag+, Cu2+, Zn2+, Cd2+, Fe3+ and Th4+. The sorption of monovalent cations show purely ion-exchange mechanism while the uptake of bivalent and trivalent cations is non-equivalent in nature. Single elution of Rb+, Cs+ and Tl+ has been performed from the columns of this exchanger and the recovery is almost complete in all the cases. Cu2+ and Ag+ get completely adsorbed on the gel column and their elution is not possible probably due to the formation of some new solid phases. Depending on the Kd values of the metal ions, a large number of separations of radiochemical as well as analytical importance can be performed on the columns of this exchanger material.  相似文献   

5.
The synthesis and complexive abilities of 5,11,17-tris(tert-butyl)-23 amino-25,26,27,28-tetra-propoxycalix[4]arene towards alkali cations Li+, Na+, K+, Rb+, Cs+ and alkali earth cations Mg2+, Ca2+, Sr2+ and Ba2+ in methanol-chloroform mixture have been evaluated at 25°C, using UV-Vis spectrophotometric techniques. The results showed that the ligand is capable to complex with all the cations by 1: 1 metal to ligand ratios. The selectivity presented considering the calculated formation constants are in the order Li+ > Na+ > K+ > Rb+ > Cs+ and Mg2+ > Ca2+ > Sr2+ > Ba2+ with the ligand.  相似文献   

6.
Selectivity of Crystalline CeIV Phosphate Sulphate Hydrates for Li+, Na+, K+, Rb+, Cs+, and NH in Absolute Methanol and Absolute Dimethylsulphoxide The sequence of exchange capacities of Cerium(IV) phosphate sulphate hydrate (CePO4)2(HPO4)0.74(SO4)0.26 · 4,74 H2O for alkalimetal ions and ammoniumions in absolute methanol at 25°C for the case of a small excess of the exchanger (in relation to the equivalent amount) is given by K+ > Rb+ ≥ NH4+ > Cs+ > Na+ > Li+. Between the exchange capacity A of these cations and their ionic radii r (given by Ladd) exists the simple relation A = const./r. For Na+ the radius of the inner hydration shell must be considered. In absolute dimethyl-sulphoxide under the same conditions the sequence is K+ ≥ NH4 > Rb+ > Na+ > Cs+ > Li+. For K+, NH4, Rb+ and Cs+ the exchange capacity is given by A = const./r + const. · r4. The sequences of the alkali ions in both solvents are among the group of 13 sequences which are physicaly significant according to EISENMANNS 's theory. The results are compared with the observations made with water as solvent.  相似文献   

7.
Summary A pure silica gel (Pia Seed 5S-60-SIL), synthesized by the hydrolysis of pure tetraethoxysilane [Si(OCH2CH3)4], was applied as a cation-exchange stationary phase in ion chromatography with indirect photometric detection for common mono-and divalent cations (Li+, Na+, NH4 +, K+, Mg2+, and Ca2+) using various protonated aromatic monoamines (tyramine [4-(2-aminethyl) phenol], benzylamine, phenylethylamine, 2-methylpyridine and 2,6-dimethylpyridine) as eluet ions. When using 0.75 mM tyramine-0.25 mM oxalic acid-1.5 mM 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) at pH 5.0 as the eluent, excellent simultaneous separation and highly sensitive detection at 275 nm for these mono-and divalent cations were achieved on the Pia Seed 5S-60-SIL column (150×4.6 mm I.D.) in 20 min.  相似文献   

8.
The selectivity of eight lariat crown ethers in the sym‐dibenzo‐16‐crown‐5 series toward alkali metal ions was studied with electrospray ionization mass spectrometry under different conditions. With the exception of 2g , which is equally selective toward Na+ and Li+, all other lariat crown ethers show the best selectivity toward Li+ in methanol. Factors that influence the selectivity include the water content, counterions, nature of the side arms, and the externally added cations. Iodide gives the best Na+ selectivity with RI > RBr > RCl. Increased water content profoundly increases the Na+ selectivity when the side arm is hydrophilic and the steric hindrance is small. Externally added cations (Cs+ and/or Rb+) enhance the Na+ selectivity by exchanging the smaller Li+ from the cavity.  相似文献   

9.
An ion chromatography method is described for the simultaneous determination of anions (Cl, NO3, and SO42–) and cations (Na+, NH4+, K+, Mg2+, and Ca2+) using a single pump, a single eluent and a single detector. An anion-exchange column modified with chondroitin sulfate C facilitated the elution of the above three anions using 5 mM tartaric acid as the eluent in isocratic mode, whereas the same eluent facilitated the separation of the above five cations on a commercially-available cation-exchange column. The separation columns were connected in series via two six-port switching valves, so the required cation-exchange or anion-exchange separation could be carried out by selecting the appropriate positions for the switching valves. The separations were completed in 30 min.  相似文献   

10.
Poly (styrene/divinyl benzene) with cryptand 22 as an anchoring group was synthesized and applied as a bifunctional packing material for the separation of both cations and anions. At pH < 2, the resin can be protonated and applied as an anion exchanger for the separation of anions; with water as eluent, inorganic anions such as F?, Cl?, Br?, NO3?”, I? were well separated. After deprotonation at pH> 10, the resin became a cation exchanger and successfully separated alkali metal ions such as Li+, K+ and Cs+ with methanol as eluent. The effects of solvents, flow rate and temperature on the separation of various ions were also investigated.  相似文献   

11.
Lithium and magnesium isotopes were separated by chemical ion exchange using hydrous manganese(IV) oxide and elution chromatography. The capacity of manganese(IV) oxide was 0.5 meq/g. The glass ion exchange column used was 35 cm long with an inner diameter of 0.2 cm, and 2.0M CH3COONH4 solution served as eluent. The single stage separation factor was determined from the elution curves and isotopic assays according to the method of Glueckauf. The separation factor of 6Li+-7Li+ was 1.022±0.002, those of 24Mg2+-25Mg2+, 24Mg2+-26Mg2+, and 25Mg2+-26Mg2+ were 1.012±0.001, 1.021±0.002, and 1.011±0.001, respectively.  相似文献   

12.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq) + Cs+(org) ⟺ M+(org) + Cs+(aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M+ = Li+, H3O+, Na+, NH4+ \hbox{NH}_{4}{}^{+} , Ag+, Tl+, K+, Rb+; aq = aqueous phase, org = FS 13 phase) were evaluated. Furthermore, the individual extraction constants of the M+ cations in the mentioned two-phase system were calculated; they were found to increase in the series of Li+ < H3O+ < Na+< NH4 + \hbox{NH}_{4}{}^{ + } < Ag+ < Tl+ < K+ < Rb+ < Cs+.  相似文献   

13.
Zusammenfassung Die Trennung der Ionenpaare Rb+/Cs+, K+/Rb+, K+/Cs+, Na+/K+, Li+/Na+ mit Salzsäure oder Ammoniumchloridlösung als Elutionsmittel gelingt quantitativ oder nahezu quantitativ mit Hilfe von Titanhexacyanoferrat(II)-säulen. Die Cäsiumionen können nicht eluiert werden. Ebenso gelingt die Trennung der lonenpaare Sr2+/Ba2+, Ca2+/Ba2+, Ba2+/Cs+ und Sr2+/Cs+ quantitativ oder nahezu quantitativ. Auch eine partielle Trennung der Seltenen Erden ist möglich; Yttrium ist leichter eluierbar als die Lanthanide.
Summary The quantitative or nearly quantitative separation of the ion pairs Rb+/Cs+, K+/Rb+, k+/Cs+, Na+/K+ and Li+/Na+ can be achieved with hydrochloric acid or ammonium chloride solutions as eluents by means of columns of titanium hexacyanoferrate(II). The elution of the Cs+ ions is not possible. In the same way the quantitative or nearly quantitative separation of the ion pairs Sr2+/Ba2+, Ca2+/Ba2+, Ba2+/Cs+ and Sr2+/Cs+ can be achieved. Also a partial separation of the rare-earth elements is possible; yttrium is more easily eluted than the lanthanides.
  相似文献   

14.
1.  Using a conductometric method in a mixed THF-CHCl3 solvent, the complex-forming abilities of bis(ortho-(diethoxyphosphinylmethoxy)phenyl) ethers of oligoethylene glycols towards alkali metal cations have been studied. Complex-forming ability towards Li+, Na+, K+, and Rb+ cations depends very much on the length of the polyether chain. In the case of the Cs+ cation the effectiveness increases monotonically with increase in the number of ethylene glycol units.
2.  The complex-forming abilities of the higher members of the series of podands studied — bis(ortho-(diethoxyphosphinylmethoxy)phenyl) ethers of tetraethylene glycol and pentaethylene glycol — towards K+, Rb+, and Cs+ cations are comparable with, and in some cases exceed, those for 18-crown-6 and dibenzo-18-crown-6.
3.  The enhanced effectiveness of the present class of podands (in comparison with podands with ortho-diethoxyphosphinylphenyl terminal groups) towards alkali metal cations of greater radius (K+, Rb+, Cs+) is explained by the participation of the O atom located at the -position to the phosphoryl group in the coordination.
For previous communications, see [1, 2].  相似文献   

15.
A series of nanoporous carbon nitrides that contained a range of alkali metal cations (M@nanoC3N4: M=Li+, Na+, K+, Rb+, and Cs+) have been successfully synthesized from as‐synthesized g‐C3N4 by delamination with concentrated sulfuric acid, followed by neutralization with aqueous solutions of the corresponding alkali metal hydroxides. Tris(2,2′‐bipyridine)ruthenium(II) complexes, [Ru(bpy)3]2+, were grafted onto the carbon nitrides in an effort to explore the physicochemical properties of the deposited [Ru(bpy)3]2+, as well as its photocatalytic activity in the aerobic photooxidation of phenylboronic acid and H2 production from aqueous media in the presence of a Pt co‐catalyst under visible‐light irradiation. Highly porous nanoC3N4 could significantly enhance photocatalytic activity, because of its high surface area, owing to its unique porous structure. More interestingly, the photoluminescence intensities of [Ru(bpy)3]2+ complexes that were associated with M@nanoC3N4 increased in the presence of lighter alkali metal cations, which correlated with increased photocatalytic activities for both reactions. This study demonstrates that M@nanoC3N4 are fascinating supports, in which the local environment of an immobilized metal complex can be precisely controlled by varying the alkali metal cation from Li+ to Cs+.  相似文献   

16.
Isotherms and integral heats of exchange of alkali metal, ammonium, and silver cations on sodium clinoptilolite were measured. Exchange involving K+, NH4 +, Cs+, and Ag+ displacing cations was found to be exothermic for all occupancies of the clinoptilolite exchange sites. Exchange was exothermic for Li+ cations up to = 0.15. The dependence of the differential ion-exchange heats on was determined. Clinoptilolite was found to have two types of exchange sites with different heats of ion exchange. The experimental data were used to calculate the selectivity coefficients, thermodynamic constants, and ion-exchange entropy. These findings are discussed relative to the differences in the cation properties and structural features of clinoptilolite.A. V. Dumanskii Institute of Colloid Chemistry and the Chemistry of Water, National Academy of Sciences of Ukraine, 42 Prospekt Akademika Vernadskogo, 252680 Kiev-142, Ukraine. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 32, No. 5, pp. 315–319, September–October, 1996. Original article submitted February 12, 1996.  相似文献   

17.
An ion chromatographic (IC) method has been developed for determination of hydrogen ion (H+). It is based on the use of sulfonated cation-exchange resin as stationary phase, aqueous ethylenediamine-N,N,N′,N′-tetraacetic acid (dipotassium salt, EDTA-2K, written as K2H2Y) solution as mobile phase, and conductivity for detection. H+ was separated mainly by cation-exchange, but its elution was accelerated by the presence of EDTA. The order of elution for the model cations was H+ > Li+ > Na+ > NH4 + > Ca2+ > > Mg2+. A sharp and highly symmetrical peak was obtained for H+ and this was attributed to the capacity of H2Y2 2– to receive and bind H+. H+ was detected conductiometrically and detector response (reduction in conductivity as a result of H++H2Y2–→H3Y) was linearly proportional to the concentration of H+ in the sample. The detection limit for H+ with this IC system was better than 4.7 μmol L–1. A significant advantage of this method was the ability to separate and determine, in one step, H+ and other cations. The successful determination of H+ and other cation species in real acid-rain samples demonstrated the usefulness of this method.  相似文献   

18.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

19.
Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+?>?Rb+?>?K+?>?Na+?>?Li+ and Ba2+?>?Sr2+?>?Ca2+?>?Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36?C84?°C), the dehydration of interlayer water and the chemical-adsorption water (47?C189?°C) and dehydration of bound water of interlayer metal cation (108?C268?°C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.  相似文献   

20.
Mori M  Itabashi H  Ikedo M  Tanaka K 《Talanta》2006,70(1):174-177
An ion-exclusion chromatographic method for the direct UV detection of non-absorbing inorganic cations such as sodium (Na+), ammonium (NH4+) and hydrazine (N2H5+) ions was developed by connecting an anion-exchange column in the I-form after the separation column. For example, NH4+ is converted to a UV-absorbing molecule, NH4I, by the anion-exchange column in the I-form after the ion-exclusion separation on anion-exchange column in the OH-form with water eluent. As a result, the direct UV detection of Na+, NH4+ and N2H5+ could be successfully obtained as well as the well-resolved separation. The calibration graphs of the analyte cations detected with UV at 230 nm were linear in the range of 0.001-5.0 mM. The detection limits at S/N = 3 of the cations were below 0.1 μM. This method was applied to real water analysis, the determination of NH4+ in river and rain waters, or that of N2H5+ in boiler water, with the satisfactory results. This could be applied also to low- or non-absorbing anions such as fluoride or hydrogencarbonate ions by the combination of a weakly acidic cation-exchange resin in the H+-form as the separation column and the anion-exchange conversion column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号