首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclo(L ‐Glu‐L ‐Glu) has been crystallised in two different polymorphic forms. Both polymorphs are monoclinic, but form 1 is in space group P21 and form 2 is in space group C2. Raman scattering and FT‐IR spectroscopic studies have been conducted for the N,O‐protonated and deuterated derivatives. Raman spectra of orientated single crystals, solid‐state and aqueous solution samples have also been recorded. The different hydrogen‐bonding patterns for the two polymorphs have the greatest effect on vibrational modes with N H and CO stretching character. DFT (B3‐LYP/cc‐pVDZ) calculations of the isolated cyclo(L ‐Glu‐L ‐Glu) molecule predict that the minimum energy structure, assuming C2 symmetry, has a boat conformation for the diketopiperazine ring with the two L ‐Glu side chains being folded above the ring. The calculated geometry is in good agreement with the X‐ray crystallographic structures for both polymorphs. Normal coordinate analysis has facilitated the band assignments for the experimental vibrational spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Investigations of the vibrational spectra of cyclo(Gly‐Gly), cyclo(L‐Ala‐L ‐Ala) and cyclo(L ‐Ala‐Gly) are reported. Raman scattering and Fourier transform infrared (FTIR) spectra of solid‐state and aqueous protonated samples, as well as their corresponding N‐deuterated isotopomers, have been examined. In addition, density functional theory (DFT) (B3‐LYP/cc‐pVDZ) calculations of molecular structures and their associated vibrational modes were carried out. In each case, the calculated structures of lowest energy for the isolated gas‐phase molecules have boat conformations. Assignments have been made for the observed Raman and FTIR vibrational bands of the cyclic di‐amino acid peptides (CDAPs) examined. Raman polarization studies of aqueous phase samples are consistent with C2 and C1 symmetries for the six‐membered rings of cyclo(L‐Ala‐L‐Ala) and cyclo(L‐Ala‐Gly), respectively. There is a good correlation between experimental and calculated vibrational bands for the three CDAPs. These data are in keeping with boat conformations for cyclo(L‐Ala‐L‐Ala) and cyclo(L‐Ala‐Gly) molecules, predicted by the ab initio calculations, in both the solid and aqueous solution states. However, Raman spectroscopic results might infer that cyclo(L‐Ala‐Gly) deviates only slightly from planarity in the solid state. The potential energy distributions of the amide I and II modes of a cis‐peptide linkage are shown to be significantly different from those of the trans‐peptides. For example, deuterium shifts have shown that the cis‐amide I vibrations found in cyclo(Gly‐Gly), cyclo(L‐Ala‐L‐Ala), and cyclo(L‐Ala‐Gly) have larger N‐H contributions compared to their trans‐amide counterparts. Compared to trans‐amide II vibrations, cis‐amide II vibrations show a considerable decrease in N H character. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Solid‐state protonated and N,O‐deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di‐amino acid peptide cyclo(L ‐Asp‐L ‐Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3‐LYP/cc‐pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L ‐Asp‐L ‐Asp), assuming C2 symmetry, predicts a boat conformation for the DKP ring with both the two L ‐aspartyl side chains being folded slightly above the ring. The CO stretching vibrations have been assigned for the side‐chain carboxylic acid group (e.g. at 1693 and 1670 cm−1 in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm−1 in the Raman spectrum). The presence of two bands for the carboxylic acid CO stretching modes in the solid‐state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm−1 in the solid‐state Raman spectrum, which is in agreement with results for cyclic di‐amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the Cα atom is increased, the amide II band wavenumber decreases to below 1500 cm−1; this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm−1), which indicates that this band has a smaller N H bending contribution than the trans amide II vibrational band observed for linear peptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The mixed triaminocyclopropenium cation bis(diisopropylamino)dimethylaminocyclopropenium was prepared from bis(diisopropylamino)chlorocyclopropenium by reaction with dimethylamine. It was isolated as the perchlorate salt and found to have a distorted structure in the solid state. Tris(diisopropylamino)cyclopropenium was prepared by reaction of pentachlorocyclopropane with diisopropylamine in a refluxing dichloroethane solution for 2 days. The solid state structure was found by X‐ray crystallography to have two planar amino groups and one pyramidal amino group, however, the 1H‐NMR and infrared solution spectra show equivalent isopropyl groups in solution. The compounds were also characterised by Raman and infrared spectroscopy. Additionally, a new polymorph of [C3(NMe2)3]ClO4 is described as well as the X‐ray structure of bis(diisopropylamino)cyclopropenone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Some seashells of the Philippine venus species and sea coral of Porites sp. were studied by means of FT‐Raman, Fourier transform infrared spectroscopy (FTIR) and Far‐FTIR spectroscopic methods. The Raman spectra show that both Porites sp. and P. venus are of aragonite‐structured CaCO3. Detailed spectral analysis, however, reveals some small differences, due to differences in the crystallite size or habit and to different minor element contents. IR spectra show that Porites sp. contains also some small quantities of calcite‐structured carbonates. The ν2 band (shoulder) of calcite at 875.7 cm−1 is present in the IR spectrum. The separation of the two ν2 bands (856.4 cm−1 for aragonite and 875.7 cm−1 for calcite) suggests the absence of solid solution of the two polymorphic phases of CaCO3. Spectroscopic results were confirmed also by X‐ray powder diffraction measurements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
B3‐LYP/cc‐pVDZ calculations of the gas‐phase structure and vibrational spectra of the isolated molecule cyclo(L ‐Ser‐L ‐Ser), a cyclic di‐amino acid peptide (CDAP), were carried out by assuming C2 symmetry. It is predicted that the minimum‐energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L ‐seryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol−1) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X‐ray crystallographic structure of cyclo(L ‐Ser‐L ‐Ser), shows that the DKP ring displays a near‐planar conformation, with both the two L ‐seryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier‐transform infrared (FT‐IR) spectra of solid state and aqueous solution samples of cyclo(L ‐Ser‐L ‐Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid‐state samples show characteristic amide I vibrations which are split (Raman: 1661 and 1687 cm−1, IR: 1666 and 1680 cm−1), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ∼30 cm−1, which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm−1. The occurrence of this cis amide II mode at a wavenumber above 1500 cm−1 concurs with results of previously examined CDAP molecules with low molecular weight substituents on the Cα atoms, and is also indicative of a relatively unstrained DKP ring. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
First and second‐order Raman spectra of B6O and their dependence on the wavelength of the excitation line from IR (infrared) to deep UV (ultraviolet) has been studied. The first‐order Raman spectra contain 11 well‐resolved lines of the 12 expected modes 5 A1g + 7 Eg (space group R‐3m, point group D3d). The second‐order Raman spectra contains eight lines that are resolved only in the case of the 244‐nm excitation line. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Pb(Fe2/3W1/3)O3 (PFW) thin films were deposited on platinized silicon substrate by a chemical solution deposition technique. Room‐temperature X‐ray diffraction (XRD) revealed a pure cubic crystal structure of the investigated material. The microstructure indicated good homogeneity and density of the thin films. A Raman spectroscopic study was carried out on PFW to study the polar nano‐regions in the temperature range 85–300 K. The Raman spectra showed a change in the peak intensity and a shift towards the lower wavenumber side with temperature. The Raman spectra also revealed the transition from the relaxor to the paraelectric state of PFW. There was no evidence of a soft mode in the low‐temperature region, in contrast to the normal ferroelectric behavior. The polar nano‐regions tend to grow and join at low temperatures (∼85 K), which become smaller with increase in temperature. The presence of strong Raman spectra in the cubic phase of the material is due to the presence of distributed Fm3m(Z = 2) symmetry nano‐ordered regions in the Pm3m(Z = 1) cubic phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The molecular structure and conformational properties of ethyl trifluoroacetate, CF3CO2CH2CH3, were determined in the gas phase by electron diffraction, and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. Experimental and theoretical methods result in two structures with Cs (anti–anti) and C1 (anti–gauche) symmetries, the former being slightly more stable than the latter. The electron‐diffraction data are best fitted with a mixture of 56% anti–gauche and 44% anti–anti conformers. The conformational preference was also studied using the total energy scheme, and the natural bond orbital scheme. Also, the infrared spectra of CF3CO2CH2CH3 are reported for the gas, liquid and solid states, as is the Raman spectrum of the liquid. The comparison of experimental averaged IR spectra of Cs and C1 conformers provides evidence for the predicted conformations in the IR spectra. Harmonic vibrational wavenumbers and scaled force fields have been calculated for both conformers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The short‐time structural dynamics of 4‐formaldehyde imidazole and imidazole in light absorbing S2(ππ*) state were studied by using resonance Raman spectroscopy and quantum mechanical calculations. The vibrational spectra and ultraviolet absorption spectra of 4‐formaldehyde imidazole were assigned. The resonance Raman spectra of imidazole and 4‐formaldehyde imidazole were obtained in methanol and acetonitrile with excitation wavelengths in resonance with the first intense absorption band to probe the short‐time structural dynamics. complete active space self‐consistent field calculations were carried out to determine the minimal singlet excitation energies and structures of S1(nπ*), S2(ππ*), and conical intersection point S1(nπ*)/S2(ππ*). The results show that the A‐band structural dynamics of imidazole is predominantly along the N1H/C4H/C5H/C2H in‐plane bending reaction coordinate, which suggests that excited state proton or hydrogen transfer reaction takes place somewhere nearby the Franck–Condon region. The significant difference in the short‐time structural dynamics between 4‐formaldehyde imidazole and imidazole is observed, and the underlying mechanism is interpreted in term of excited state charge redistribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Room‐temperature polarized Raman spectra of a single crystal and IR spectra of a polycrystalline sample were measured for [N(C2H5)4]2MnCl4 and the assignment of the observed bands to the respective modes has been proposed. Temperature‐dependent Raman and far‐IR studies were also performed for the polycrystalline sample in order to obtain information on changes occurring in this material as a result of phase transitions at T1 = 227 K and at T2 = 199 K. These studies revealed that the higher‐temperature ferroelastic phase transition is associated with significant modification of vibrational properties due to ordering of tetraethylammonium groups. The lower‐temperature phase transition does not lead to any clear changes in the spectra. However, our results suggest that disorder of MnCl42− ions decreases with decreasing temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Raman spectra in solid and 1 M solution of L ‐cysteine and surface‐enhanced Raman scattering (SERS) spectra of this molecule in the zwitterionic form, by using colloidal silver nanoparticles, have been recorded. Density functional theory with the B3LYP functional was used for the optimizations of the ground state geometries and simulation of the vibrational spectrum of this amino acid. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman and SERS vibrations and the corresponding assignments, as well as a comparison of force constants and geometrical parameters between the free zwitterion cysteine and the one in the presence of the colloidal silver nanoparticles, we can confirm the presence of gauche (PH) and trans (PN) rotamers in the solid state, the formation of a S S bond in the solution state, the dissociation of the peptide bond and mixing of rotamers because of the SERS effect, and the relative importance of the interaction of sulphyldryl, NH3+, and carboxylate groups with the metallic surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Experimental Raman and FT‐IR spectra of solid‐state non‐deuterated and N‐deuterated samples of cyclo(L ‐Met‐L ‐Met) are reported and discussed. The Raman and FT‐IR results show characteristic amide I vibrations (Raman: 1649 cm−1, infrared: 1675 cm−1) for molecules exhibiting a cis amide conformation. A Raman band, assigned to the cis amide II vibrational mode, is observed at ∼1493 cm−1 but no IR band is observed in this region. Cyclo(L ‐Met‐L ‐Met) crystallises in the triclinic space group P1 with one molecule per unit cell. The overall shape of the diketopiperazine (DKP) ring displays a (slightly distorted) boat conformation. The crystal packing employs two strong hydrogen bonds, which traverse the entire crystal via translational repeats. B3‐LYP/cc‐pVDZ calculations of the structure of the molecule predict a boat conformation for the DKP ring, in agreement with the experimentally determined X‐ray structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Modified nucleobases (MNs) are promising molecules with potential application in non‐linear optic (NLO) and drug design against a wide number of diseases. In the present paper we report studies on a cross‐conjugated mesomeric betaine, which can act as a MN, formed by the covalent union of a 4‐dimethylamino pyridinium and a uracilyl groups. The molecule thus formed must be presented by a dipolar canonical formulae in which positive and negative charges are delocalized within separated moieties. Quantum chemistry density functional theory (DFT) calculations, at the B3PW91/6‐31G** level, and Fourier transform (FT) infrared and Raman spectra of this molecule and its N‐deuterated derivative were performed. The calculated structural properties over the ground state optimized structure evidenced a strong separation between the two conjugated systems. Comparison with previous results obtained for the cationic species indicated that N‐protonation clearly affects the degree of conjugation. Assignments of the FT‐IR and FT‐Raman spectra were supported by the DFT wavenumbers, intensities and normal modes, which also evidenced the separation of the two conjugated systems. Significant deviations were found for the stretching force constants of the inter‐ring and the uracilyl skeletal bonds when comparing this molecule with its N‐protonated species. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
As an important chemosensing material involving hexafluoroisopropanol (HFIP) for detecting nerve agents, para‐HFIP aniline (p‐HFIPA) has been firstly synthesized through a new reaction approach and then characterized by nuclear magnetic resonance and mass spectrometry experiments. Fourier transform infrared absorption spectroscopy (FT‐IR) and FT‐Raman spectra of p‐HFIPA have been obtained in the regions of 4000–500 and 4000–200 cm−1, respectively. Detailed identifications of its fundamental vibrational bands have been given for the first time. Moreover, p‐HFIPA has been optimized and vibrational wavenumber analysis can be subsequently performed via density functional theory (DFT) approach in order to assist these identifications in the experimental FT‐IR and FT‐Raman spectra. The present experimental FT‐IR and FT‐Raman spectra of p‐HFIPA are in good agreement with theoretical FT‐IR and FT‐Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Raman and infrared spectra are reported for rhodanine, 3‐aminorhodanine and 3‐methylrhodanine in the solid state. Comparisons of the spectra of non‐deuterated/deuterated species facilitate discrimination of the bands associated with N H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas‐phase molecules, at the B3‐LYP/cc‐pVTZ and B3‐PW91/cc‐pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ∼1713 and 1779 cm−1, whereas a Raman and IR band at ∼1457 cm−1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3‐aminorhodanine and 3‐methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm−1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm−1 in the IR spectra, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we investigate the solvation of silver bis(trifluoromethylsulfonyl)imide salt (AgTFSI) in 1‐ethyl‐3‐methylimidazolium TFSI [EMI][TFSI] ionic liquid by combining Raman and infrared (IR) spectroscopies with density functional theory (DFT) calculations. The IR and Raman spectra were measured in the 200–4000 cm−1 spectral region for AgTFSI/[EMI][TFSI] solutions with different concentrations ([AgTFSI] <0.2 mole fraction). The analysis of the spectra shows that the spectral features observed by dissolution of AgTFSI in [EMI][TFSI] solution originate from interactions between the Ag+ cation and the first neighboring TFSI anions to form relatively stable Ag complexes. The ‘gas phase’ interaction energy of a type [Ag(TFSI)3]2− complex was evaluated by DFT calculations and compared with other interionic interaction energy contributions. The predicted spectral signatures because of the [Ag(TFSI)3]2− complex were assessed in order to interpret the main IR and Raman spectral features observed. The formation of such complexes leads to the appearance of new interaction‐induced bands situated at 753 cm−1 in Raman and at 1015 and 1371 cm−1 in IR, respectively. These specific spectral signatures are associated with the ‘breathing’ mode and the S–N–S and S–O stretching modes of the TFSI anions engaged in the complex. Finally, all these findings are discussed in terms of interaction mechanisms enabling the electrodeposition characteristics of silver from AgTFSI/[EMI][TFSI] IL‐based electrolytic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号