首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Titanium dioxide (TiO2) thin film was deposited on n‐Si (100) substrate by reactive DC magnetron sputtering system at 250 °C temperature. The deposited film was thermally treated for 3 h in the range of 400‐1000 °C by conventional thermal annealing (CTA) in air atmosphere. The effects of the annealing temperature on the structural and morphological properties of the films were investigated by X‐ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD measurements show that the rutile phase is the dominant crystalline phase for the film annealed at 800 °C. According to AFM results, the increased grain sizes indicate that the annealing improves the crystalline quality of the TiO2 film. In addition, the formation of the interfacial SiO2 layer between TiO2 film and Si substrate was evaluated by the transmittance spectra obtained with FTIR spectrometer. The electronic band transitions of as‐deposited and annealed films were also studied by using photoluminescence (PL) spectroscopy at room temperature. The results show that the dislocation density and microstrain in the film were decreased by increasing annealing temperature for both anatase and rutile phases. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
TiO2 thin films, were deposited on Si(100) and Si(111) substrates by metalorganic chemical vapor deposition at 500 °C, and have been annealed for 2 min, 30 min and 10 hours at the temperature from 600 °C to 900 °C, in oxygen and air flow, respectively. XRD and atomic force microscopy characterized the structural properties and surface morphologies of the films. As‐deposited films show anatase polycrystalline structure with a surface morphology of regular rectangled grains with distinct boundaries. Rutile phase formed for films annealed above 600 °C, and pure rutile polycrystalline films with (110) orientation can be obtained after annealing under adequate conditions. Rutile annealed films exhibit a surface morphology of equiaxed grains without distinct boundaries. The effects of substrate orientation, annealing time and atmosphere on the structure and surface morphology of films have also been studied. Capacitance‐Voltage measurements have been performed for films deposited on Si(100) before and after annealing. The dielectric properties of TiO2 films were greatly improved by thermal annealing above 600 °C in oxygen.  相似文献   

3.
GeO2 thin films were prepared by sol‐gel method on ITO/Glass substrate. The electrical and optical properties and the microstructures of these films were investigated with special emphasis on the effects of an annealing treatment in ambient air. The films were annealed at various temperatures from 500 °C to 700 °C. Structural analysis through X‐ray diffraction (XRD) and atomic force microscope (AFM) showed that surface structure and morphological characteristics were sensitive to the treatment conditions. The optical transmittance spectra of the GeO2/ITO/Glass were measured using a UV‐visible spectrophotometer. All films exhibited GeO2 (101) orientation perpendicular to the substrate surface where the grain size increased with increasing annealing temperature. The optical transmittance spectroscopy further revealed high transparency (over 70 %) in the wave range 400 – 800 nm of the visible region. At an annealing temperature level of 700 °C, the GeO2 films were found to possess a leakage current density of 1.31×10‐6A/cm2 at an electrical field of 20 kV/cm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The structural, morphological and optical properties of vacuum‐evaporated CdTe thin films were investigated as a function of substrate temperature and post‐deposition annealing without and with CdCl2/treatment at 400°C for 30 min. Diffraction patterns are almost the same exhibiting higher preferential orientation corresponding to (111) plane of the cubic phase. The intensity of the (111) peak increased with the CdCl2/annealing treatment. The microstructure observed for all films following the CdCl2/annealing treatment are granular, regardless of the as‐deposited microstructure. The grain sizes are increased after the CdCl2/annealing treatment but now contain voids around the grain boundaries. The optical band gaps, Eg, were found to be 1.50, 1.50 and 1.48 eV for films deposited at 200 K and annealed without and with CdCl2/treatment at 400°C for 30 min respectively. A progressive sharpening of the absorption edge upon heat treatment particularly for the CdCl2/treated was observed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The structural, electrical and optical properties of AgGa(Se0.5S0.5 )2 thin films deposited by using the thermal evaporation method have been investigated as a function of annealing in the temperature range of 450–600 °C. X‐ray diffraction (XRD) analysis showed that the structural transformation from amorphous to polycrystalline structure started at 450 oC with mixed binary phases of Ga2Se3, Ga2S3, ternary phase of AgGaS2 and single phase of S. The compositional analysis with the energy dispersive X‐ray analysis (EDXA) revealed that the as‐grown film has different elemental composition with the percentage values of Ag, Ga, Se and S being 5.58, 27.76, 13.84 and 52.82 % than the evaporation source powder, and the detailed information about the stoichometry and the segregation mechanisms of the constituent elements in the structure have been obtained. The optical band gap values as a function of annealing temperature were calculated as 2.68, 2.85, 2.82, 2.83, and 2.81 eV for as‐grown, annealed at 450, 500, 550, and 600 °C samples, respectively. It was determined that these changes in the band gap are related with the structural changes with annealing. The temperature dependent conductivity measurements were carried out in the temperature range of 250‐430 K for all samples. The room temperature resistivity value of as‐grown film was found to be 0.7x108 (Ω‐cm) and reduced to 0.9x107 (Ω‐cm) following to the annealing. From the variation of electrical conductivity as a function of the ambient temperature, the activation energies at specific temperature intervals for each sample were evaluated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Polycrystalline Cd doped InSe thin films were obtained by thermal co‐evaporation of alpha‐In2Se3 lumps and Cd onto glass substrates at a temperature of 150°C. The films were annealed at 150°C and 200°C. The films were found to contain around 46% In, 47% Se and 7% Cd in weight. The films exhibited p‐type conductivity. The results of conductivity measurements have revealed that thermionic emission and variable range hopping are the two dominant conduction mechanisms, in the temperature ranges of 320‐160 K and 150‐40 K respectively. It was observed that above 240 K mobility is limited by the scattering at the grain boundaries. As the temperature decreases, thermal lattice scattering followed by the ionized impurity scattering dominate as the two main mechanisms controlling the mobility. Acceptor to donor concentration ratio was found to be slightly increasing due to annealing.  相似文献   

7.
Transparent ZnO crystals were obtained by the flux Bridgman method from high temperature solution of 22 mol% ZnO‐78 mol% PbF2 system. The influence of annealing temperatures on the photoluminescence (PL) of ZnO crystal was investigated. An ultraviolet emission peak at about 379 nm was observed in PL spectra and the peak position has a weak blueshift for annealed samples. A green band centered at 523 nm appeared in the annealed samples and its intensity enhanced with the increase of annealing temperatures, while the intensity of the ultraviolet peak decreased considerably. However, the ultraviolet emission peak became the strongest after annealing at 1000 °C. This phenomenon was considered to be associated with oxygen vacancy and F impurities induced by the PbF2 flux. The results show that high temperature annealing in air seems helpful for improving the PL properties of ZnO crystal. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
(Lu1–xEux)2O3 smooth, crack‐free, transparent films were prepared by the Pechini sol–gel method and a spin‐coating technique. Thermogravimetric analysis, differential thermal analysis and FITR spectroscopy were used to study the chemical processes during annealing of the films. Film structure, morphology and optical properties were investigated. X‐ray diffraction (XRD) analysis reveals the cubic phase of (Lu1–xEux)2O3 films annealed in the 600–1000 °C temperature range. Smooth and crack‐free films with thicknesses of 250–1000 nm were obtained in the 600–800 °C temperature range. The thickness upper limit (1000 nm) of morphological stability of films (Lu1–xEux)2O3 on sapphire substrates has been studied.  相似文献   

9.
This paper reports the photoelectrical properties of sol gel derived titanium dioxide (TiO2) thin films annealed at different temperatures (425‐900°C). The structure of the as‐grown film was found to be amorphous and it transforms to crystalline upon annealing. The trap levels are studied by thermally stimulated current (TSC) measurements. A single trap level with activation energy of 1.5 eV was identified. The steady state and transient photocurrent was measured and the results are discussed on the basis of structural transformation. The photocurrent was found to be maximum for the films annealed at 425°C and further it decreases with annealing at higher temperatures. The photoconduction parameters such as carrier lifetime, lifetime decay constant and photosensitivity were calculated and the results are discussed as a function of annealing temperature. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We synthesized In2O3/ZnO/Al‐doped ZnO (AZO) core‐double shell nanowires, in which the inner shell (ZnO) and the outer shell (AZO) have been subsequently deposited on the core In2O3 nanowires. With their one‐dimensional morphology being preserved, the X‐ray diffraction (XRD), lattice‐resolved transmission electron microscopy (TEM) image, selected area electron diffraction, and Raman spectrum coincidentally revealed that the shell was comprised of hexagonal ZnO phase. In addition, TEM‐EDX investigation revealed the presence of Al elements in the shell region. The thermal annealing at 700 °C did not significantly change the nanowire morphology, however, the XRD spectrum indicated that the ZnO phase was crystallized by the annealing. PL spectrum of the 700 °C‐annealed In2O3/ZnO/AZO core‐double shell nanowires was comprised of three Gaussian bands at approximately 2.1 eV, 2.4 eV, and 3.0 eV, respectively. The integrated intensities of 2.1 eV‐, 2.4 eV‐, and 3.0 eV‐bands were decreased by the thermal annealing. This study will pave the road to the preparation and applicaition of double‐shelled nanowires. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
MgxZn1?xO thin films were deposited on quartz substrates by RF magnetron sputtering. The effect of post-annealing temperature on structural, optical, and electrical properties was investigated with the annealing temperatures increasing from 450 to 750 °C. The crystallinity of MgxZn1?xO film annealed at 650 °C was significantly improved while the film annealed at 750 °C showed little improvement. The electrical properties degraded with the increase of annealing temperature. The annealing temperature seemed to impact the Eg value of MgxZn1?xO thin films because of the variation of carrier concentration.  相似文献   

12.
Hydrogenated amorphous silicon films (α‐Si:H) were crystallized employing a metal induced crystalline (MIC) technique. Structural changes during annealing these films at 300 °C for different periods (0‐300 minutes) were obtained by XRD. Al was used as a metal induced crystalline for α‐Si:H produced by ultra high vacuum (UHV) plasma enhanced chemical vapor deposition (PECVD). XRD shows that crystallization of the interacted α‐Si:H film underneath Al initiates at 300 °C for 15 minutes. A complete crystallization was obtained after annealing for 60 minutes. A gold dot was evaporated onto α‐Si:H films, which annealed for different periods to form Schottky barriers. Electrical properties of Au/α‐Si:H were calculated such as the ideality factor, n, barrier height, ΦB, donor concentration, ND, and the diffusion voltage, Vd, as a function of the annealing time of α‐Si:H films. All these parameters were carried out through the current voltage characteristics (J‐V) and the capacitance voltage measurements (C‐V). The results were presented a discussed on the basis of XRD performance and the thermionic emission theory.  相似文献   

13.
Cadmium selenide (CdSe) thin films have been deposited by chemical bath deposition (CBD) on a glass substrate and they are annealed at 450 °C for 1 h. Scanning electron microscopic (SEM) image of as‐deposited CdSe shows the spherical shaped grains distributed over entire glass substrate. When it is annealed at 450 °C, clusters of nano‐rods with star shaped grains are formed. The X‐ray diffraction (XRD) study of the as‐deposited films exhibits a polycrystalline nature and it undergoes a structural phase transition from the metastable cubic to the stable hexagonal phase when annealed at 450 °C. Optical band gap of as‐deposited films (2.0 eV) has a blue shift with respect to the bulk value (1.7 eV) due to quantum confinement. The band gap energies of the films are decreased from 2.0 eV to 1.9 eV due to annealing at the temperature of 450 °C. The electrical resistivity, Hall mobility and carrier concentration of as‐deposited and annealed films are determined.  相似文献   

14.
Sb2S3 thin films are obtained by evaporating of Sb2S3 powder onto glass substrates maintained at room temperature under pressure of 2×10‐5 torr. The composition of the thin films was determined by energy dispersive analysis of X‐ray (EDAX). The effect of thermal annealing in vacuum on the structural properties was studied using X‐ray diffraction (XRD) technique and scanning electron microscopy (SEM). The as‐deposition films were amorphous, while the annealed films have an orthorhombic polycrystalline structure. The optical constants of as‐deposited and annealed Sb2S3 thin films were obtained from the analysis of the experimental recorded transmission spectral data over the wavelength range 400‐1400 nm. The transmittance analysis allowed the determination of refractive index as function of wavelength. It was found that the refractive dispersion data obeyed the single oscillator model, from which the dispersion parameters (oscillator energy, E0, dispersion energy, Ed) were determined. The static refractive index n(0), static dielectric constant, ε, and optical band gap energy, Eg, were also calculated using the values of dispersion parameters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this study, large‐area and uniform thickness novel nano‐sheet structured CuS thin films on ITO glass have been prepared by the one‐step electrodeposition method from a dimethyl sulfoxide solution. Thin films of completely preserved nano‐sheet like morphology of CuyS (y = 1.75, 1.8, 1.95, and 2.0) are grown by vacuum annealing CuS thin films at 500 °C for different lengths of time. The 500 °C sample heated for 10 hours was nearly converted to single phase of Cu2S with y ∼ 2. The optical direct band gaps of nano‐sheet CuyS thin films annealed at 500 °C of 2, 6, and 10 hours in vacuum were found to be 1.94, 1.68, and 1.44 eV, respectively.  相似文献   

16.
Mixed ZnO‐ZrO2 films have been obtained by sol‐gel technology. By using spin coating method, the films were deposited on Si and glass substrates. The influence of thermal annealings (the temperatures vary from 400 °C to 750 °C) on their structural properties has been studied. The structural behavior has been investigated by the means of XRD and FTIR techniques. The results revealed no presence of mixed oxide phases, the detected crystal phases were related to the hexagonal ZnO and to crystalline ZrO2. The sol‐gel ZnO‐ZrO2 films showed polycrystalline structure with a certain degree of an amorphous fraction. The optical transmittance reached 91% and it diminished with increasing the annealing temperatures. The optical properties of the sol‐gel ZnO‐ZrO2 films, deposited on glass substrates are excellent with high transparency and better then those of pure ZrO2 films, obtained at similar technological conditions. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
《Journal of Non》2007,353(44-46):4048-4054
The nanostructural, chemical, and optical features of AlxSi0.45−xO0.55 (0  x 0.05) thin films were investigated in terms of Al concentration and post-deposition annealing conditions; the films were prepared by co-sputtering a Si main target and Al-chips, and the annealing was carried out at temperatures of 400–1100 °C. The a-Si0.45O0.55 films prepared without Al-chips and annealed at 800 °C contain ∼3.5 nm-sized Si nanocrystallites. The photoluminescence (PL) intensity as well as the volume fraction of Si nanocrystallites increased with increasing the concentration of Al to a certain level. In particular, the intensity of the PL spectra of the Al0.025Si0.425O0.550 films which were annealed at 800 °C increased significantly at wavelengths of ∼580 nm. It is highly likely that the observed increase in the PL intensity is caused by the raise in the total volume of the ∼3.5 nm-sized nanocrystallites in the films. The addition of Al as well as the post-deposition annealing allow adjustment and control of the nanostructural and light-emission features of the a-SiOx films.  相似文献   

18.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

19.
Tin oxide (SnO2) thin films were deposited on UV fused silica (UVFS) substrates using filtered vacuum arc deposition (FVAD). During deposition, the substrates were at room temperature (RT). As-deposited films were annealed at 400 and 600 °C in Ar for 30 min. The film structure, composition, and surface morphology were determined as function of the annealing temperature using X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns of the SnO2 thin films deposited on substrates at RT indicated that the films were amorphous, however, after the annealing the film structure became polycrystalline. The grain size of the annealed films, obtained from the XRD analysis, increased with the annealing temperature, and it was in the range 8-34 nm. The AFM analysis of the surface revealed an increase in the film surface average grain size from 15 nm to 46 nm, and the surface roughness from 0.2 to 1.8 nm, as function of the annealing temperature. The average optical transmission of the films in the visible spectrum was >80%, and increased by the annealing ∼10%. The films’ optical constants in the 250-989 nm wavelength range were determined by variable angle spectroscopic ellipsometry (VASE). The refractive indexes of as-deposited and annealed films were in the range 1.83-2.23 and 1.85-2.3, respectively. The extinction coefficients, k(λ), of as-deposited and annealed films were in the range same range ∼0-0.5. The optical energy band gap (Eg), as determined by the dependence of the absorption coefficient on the photon energy at short wavelengths, increased with the annealing temperature from 3.90 to 4.35 eV. The lowest electrical resistivity of the as-deposited tin oxide films was 7.8 × 10−3 Ω cm, however, film annealing resulted in highly resistive films.  相似文献   

20.
《Journal of Non》2007,353(52-54):4660-4665
Thin films of silicon carbide (SiC) were prepared using pulsed laser deposition (PLD) on Si(1 0 0) substrates at a temperature of 370 °C. Various structural characterizations showed the development of short-range SiC precipitates in the films. These films were annealed isochronally at temperatures of 800 °C, 1000 °C and 1200 °C for 2 h under an inert environment. Thermally induced crystalline ordering of SiC into β-SiC phase was investigated by X-ray diffraction (XRD), Raman spectroscopy and Fourier transforms infrared (FTIR) spectroscopic measurements. In addition to the crystallization of SiC films, high temperature annealing resulted in the dissolution of carbon clusters found in the as-grown films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号