首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We prove that the divisor function d(n) counting the number of divisors of the integer n is a good weighting function for the pointwise ergodic theorem. For any measurable dynamical system (X, A, ν, τ) and any fL p (ν), p > 1, the limit
$$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{\Sigma _{k = 1}^nd\left( k \right)}}\sum\limits_{k = 1}^n {d\left( k \right)f\left( {{\tau ^k}x} \right)} $$
exists ν-almost everywhere. The proof is based on Bourgain’s method, namely the circle method based on the shift model. Using more elementary ideas we also obtain similar results for other arithmetical functions, like the θ(n) function counting the number of squarefree divisors of n and the generalized Euler totient function J s (n) = Σ d|n d s μ(n/d), s > 0.
  相似文献   

3.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

4.
The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator.The derivative in time is also fractional and is of Caputo-type, which takes into account"memory". The precise model isD_t~αu- div(u(-Δ)~(-σ)u) = f, 0 σ 1/2.This paper poses the problem over {t ∈ R~+, x ∈ R~n} with nonnegative initial data u(0, x) ≥0 as well as the right-hand side f ≥ 0. The existence for weak solutions when f, u(0, x)have exponential decay at infinity is proved. The main result is H¨older continuity for such weak solutions.  相似文献   

5.
We consider integrals of the form
$$I\left( {x,h} \right) = \frac{1}{{{{\left( {2\pi h} \right)}^{k/2}}}}\int_{{\mathbb{R}^k}} {f\left( {\frac{{S\left( {x,\theta } \right)}}{h},x,\theta } \right)} d\theta $$
, where h is a small positive parameter and S(x, θ) and f(τ, x, θ) are smooth functions of variables τ ∈ ?, x ∈ ? n , and θ ∈ ? k ; moreover, S(x, θ) is real-valued and f(τ, x, θ) rapidly decays as |τ| →∞. We suggest an approach to the computation of the asymptotics of such integrals as h → 0 with the use of the abstract stationary phase method.
  相似文献   

6.
It is proved that if an entire function f: ? → ? satisfies an equation of the form α 1(x)β 1(y) + α 2(x)β 2(y) + α 3(x)β 3(y), x,y ∈ C, for some α j , β j : ? → ? and there exist no \({\widetilde \alpha _j}\) and ?\({\widetilde \beta _j}\) for which \(f\left( {x + y} \right)f\left( {x - y} \right) = {\overline \alpha _1}\left( x \right){\widetilde \beta _1}\left( y \right) + {\overline \alpha _2}\left( x \right){\widetilde \beta _2}\left( y \right)\), then f(z) = exp(Az 2 + Bz + C) ? σ Γ(z - z 1) ? σ Γ(z - z 2), where Γ is a lattice in ?; σ Γ is the Weierstrass sigma-function associated with Γ; A,B,C, z 1, z 2 ∈ ?; and \({z_1} - {z_2} \notin \left( {\frac{1}{2}\Gamma } \right)\backslash \Gamma \).  相似文献   

7.
Let λ > 0 and
$${\Delta _\lambda }: = - \frac{{{d^2}}}{{d{x^2}}} - \frac{{2\lambda }}{x}\frac{d}{{dx}}$$
be the Bessel operator on R+:= (0,∞). We first introduce and obtain an equivalent characterization of CMO(R+, x2λdx). By this equivalent characterization and by establishing a new version of the Fréchet-Kolmogorov theorem in the Bessel setting, we further prove that a function b ∈ BMO(R+, x2λdx) is in CMO(R+, xdx) if and only if the Riesz transform commutator xxxx is compact on Lp(R+, x2λdx) for all p ∈ (1,∞).
  相似文献   

8.
We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation
$$\dot x\left( t \right) = \mathcal{L}\left( t \right)x\left( t \right) + f\left( {t,x\left( t \right)} \right),t \in \mathbb{R}$$
(P)
where {?(t): t ∈ R} is a family of linear operators from a Banach space E into itself and f: R × EE. By L(E) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0, we let C([?d, 0],E) be the Banach space of continuous functions from [?d, 0] into E and f d : [a, b] × C([?d, 0],E) → E. Let \(\hat {\mathcal{L}}:[a,b] \to L(E)\) be a strongly measurable and Bochner integrable operator on [a, b] and for t ∈ [a, b] define τ t x(s) = x(t + s) for each s ∈ [?d, 0]. We prove that, under certain conditions, the differential equation with delay
$$\dot x\left( t \right) = \hat {\mathcal{L}}\left( t \right)x\left( t \right) + {f^d}\left( {t,{\tau _t}x} \right),ift \in \left[ {a,b} \right],$$
(Q)
has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.
  相似文献   

9.
This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:
$${\left( {\int {\int {_{{\mathbb{R}^{2N}}}\frac{{{{\left| {u\left( x \right) - u\left( y \right)} \right|}^2}}}{{{{\left| {x - y} \right|}^{N + 2s}}}}dxdy} } } \right)^{\theta - 1}}{\left( { - \Delta } \right)^s}u = \lambda h\left( x \right){u^{p - 1}} + {u^{2_s^* - 1}} in {\mathbb{R}^N},$$
where (?Δ) s is the fractional Laplacian operator with 0 < s < 1, 2 s * = 2N/(N ? 2s), N > 2s, p ∈ (1, 2 s *), θ ∈ [1, 2 s */2), h is a nonnegative function and λ a real positive parameter. Using the Ekeland variational principle and the mountain pass theorem, we obtain the existence and multiplicity of solutions for the above problem for suitable parameter λ > 0. Furthermore, under some appropriate assumptions, our result can be extended to the setting of a class of nonlocal integro-differential equations. The remarkable feature of this paper is the fact that the coefficient of fractional Laplace operator could be zero at zero, which implies that the above Kirchhoff problem is degenerate. Hence our results are new even in the Laplacian case.
  相似文献   

10.
The authors study the following Dirichlet problem of a system involving fractional (p, q)-Laplacian operators:
$$\left\{ {\begin{array}{*{20}{c}} {\left( { - \Delta } \right)_p^su = \lambda a\left( x \right){{\left| u \right|}^{p - 2}}u + \lambda b\left( x \right){{\left| u \right|}^{\alpha - 2}}{{\left| v \right|}^\beta }u + \frac{{\mu \left( x \right)}}{{\alpha \delta }}{{\left| u \right|}^{\gamma - 2}}{{\left| v \right|}^\delta }uin\Omega ,} \\ {\left( { - \Delta } \right)_q^sv = \lambda c\left( x \right){{\left| v \right|}^{q - 2}}v + \lambda b\left( x \right){{\left| u \right|}^\alpha }{{\left| v \right|}^{\beta - 2}}v + \frac{{\mu \left( x \right)}}{{\beta \gamma }}{{\left| u \right|}^\gamma }{{\left| v \right|}^{\delta - 2}}vin\Omega ,} \\ {u = v = 0on{\mathbb{R}^N}\backslash \Omega ,} \end{array}} \right.$$
where λ > 0 is a real parameter, Ω is a bounded domain in R N , with boundary ?Ω Lipschitz continuous, s ∈ (0, 1), 1 < pq < ∞, sq < N, while (?Δ) p s u is the fractional p-Laplacian operator of u and, similarly, (?Δ) q s v is the fractional q-Laplacian operator of v. Since possibly pq, the classical definitions of the Nehari manifold for systems and of the Fibering mapping are not suitable. In this paper, the authors modify these definitions to solve the Dirichlet problem above. Then, by virtue of the properties of the first eigenvalue λ1 for a related system, they prove that there exists a positive solution for the problem when λ < λ1 by the modified definitions. Moreover, the authors obtain the bifurcation property when λ → λ1-. Finally, thanks to the Picone identity, a nonexistence result is also obtained when λ ≥ λ1.
  相似文献   

11.
We prove the conditional exponential stability of the zero solution of the nonlinear differential system
$$\dot y = A(t)y + f(t,y),{\mathbf{ }}y \in R^n ,{\mathbf{ }}t \geqslant 0,$$
with L p -dichotomous linear Coppel-Conti approximation .x = A(t)x whose principal solution matrix X A (t), X A (0) = E, satisfies the condition
$$\mathop \smallint \limits_0^t \left\| {X_A (t)P_1 X_A^{ - 1} (\tau )} \right\|^p d\tau + \mathop \smallint \limits_t^{ + \infty } \left\| {X_A (t)P_2 X_A^{ - 1} (\tau )} \right\|^p d\tau \leqslant C_p (A) < + \infty ,{\mathbf{ }}p \geqslant 1,{\mathbf{ }}t \geqslant 0,$$
where P 1 and P 2 are complementary projections of rank k ∈ {1, …, n ? 1} and rank n ? k, respectively, and with a higher-order infinitesimal perturbation f:[0, ∞) × UR n that is piecewise continuous in t ≥ 0 and continuous in y in some neighborhood U of the origin.
  相似文献   

12.
We consider a complex symmetric sequence space E that possesses the Fatou property and is different from l2. We prove that, for every surjective linear isometry V on E, there exist λ n ∈ ? with |λ n | = 1 and a bijective mapping π on the set ? of natural numbers such that
$$V\left( {\left\{ {\xi _n } \right\}_{n \in \mathbb{N}} } \right) = \left\{ {\lambda _n \xi _{\pi (n)} } \right\}_{n \in \mathbb{N}}$$
for every {ξ n {n∈?E.
  相似文献   

13.
We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even n ∈ N there exists an explicit bijection ψ: {0, 1}n → {x ∈ {0, 1}n+1 : |x| > n/2} such that for every xy ∈ {0, 1}n, \(\frac{1}{5} \leqslant \frac{{dis\tan ce\left( {\psi \left( x \right),\psi \left( y \right)} \right)}}{{dis\tan ce\left( {x,y} \right)}} \leqslant 4,\) where distance(·, ·) denotes the Hamming distance. In particular, this implies that the Hamming ball is bi-Lipschitz transitive.  相似文献   

14.
Suppose that λ1, λ2, λ3, λ4 are nonzero real numbers, not all negative, δ > 0, V is a well-spaced set, and the ratio λ12 is algebraic and irrational. Denote by E(V,N, δ) the number of vV with vN such that the inequality
$$\left| {{\lambda _1}p_1^2 + {\lambda _2}p_2^3 + {\lambda _3}p_3^4 + {\lambda _4}p_4^5 - \upsilon } \right| < {\upsilon ^{ - \delta }}$$
has no solution in primes p1, p2, p3, p4. We show that
$$E\left( {\upsilon ,N,\delta } \right) \ll {N^{1 + 2\delta - 1/72 + \varepsilon }}$$
for any ? > 0.
  相似文献   

15.
Let X i = {X i (t), tT} be i.i.d. copies of a centered Gaussian process X = {X(t), tT} with values in\( {\mathbb{R}^d} \) defined on a separable metric space T. It is supposed that X is bounded. We consider the asymptotic behavior of convex hulls
$ {W_n} = {\text{conv}}\left\{ {{X_1}(t), \ldots, {X_n}(t),\,\,t \in T} \right\} $
and show that, with probability 1,
$ \mathop {{\lim }}\limits_{n \to \infty } \frac{1}{{\sqrt {{2\ln n}} }}{W_n} = W $
(in the sense of Hausdorff distance), where the limit shape W is defined by the covariance structure of X: W = conv{K t , tT}, Kt being the concentration ellipsoid of X(t). We also study the asymptotic behavior of the mathematical expectations E f(W n ), where f is an homogeneous functional.
  相似文献   

16.
Let Γ < GL n (F) be a countable non-amenable linear group with a simple, center free Zariski closure. Let Sub(Γ) denote the space of all subgroups of Γ with the compact, metric, Chabauty topology. An invariant random subgroup (IRS) of Γ is a conjugation invariant Borel probability measure on Sub(Γ). An IRS is called non-trivial if it does not have an atom in the trivial group, i.e. if it is non-trivial almost surely. We denote by IRS0(Γ) the collection of all non-trivial IRS on Γ.
Theorem 0.1: With the above notation, there exists a free subgroup F < Γ and a non-discrete group topology on Γ such that for every μ ∈ IRS0(Γ) the following properties hold:

μ-almost every subgroup of Γ is open

  • F ·Δ = Γ for μ-almost every Δ ∈ Sub(Γ).
  • F ∩ Δ is infinitely generated, for every open subgroup. In particular, this holds for μ-almost every Δ ∈ Sub(Γ).
  • The map
Φ: (Sub(Γ), μ) → (Sub(F),Φ*μ) Δ → Δ ∩ F is an F-invariant isomorphism of probability spaces.A more technical version of this theorem is valid for general countable linear groups. We say that an action of Γ on a probability space, by measure preserving transformations, is almost surely non-free (ASNF) if almost all point stabilizers are non-trivial.Corollary 0.2: Let Γ be as in the Theorem above. Then the product of finitely many ASNF Γ-spaces, with the diagonal Γ action, is ASNF.Corollary 0.3: Let Γ < GLn(F) be a countable linear group, A Δ Γ the maximal normal amenable subgroup of Γ — its amenable radical. If μ ∈ IRS(Γ) is supported on amenable subgroups of Γ, then in fact it is supported on Sub(A). In particular, if A(Γ) = <e> then Δ = <e>, μ almost surely.  相似文献   

17.
The system
$$\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u,{\kern 1pt} \frac{{dy}}{{dt}} = A\left( \cdot \right)y + B\left( \cdot \right)u + D\left( {C*y - v} \right)$$
where v = C*x is an output, u = S*y is a control, A(·) ∈ R n × n , B(·) ∈ R n × (np), C ∈ R n × (np), and D ∈ R n × (np), is considered. The elements αij(·) and βij(·) of the matrices A(·) and B(·) are arbitrary functionals satisfying the conditions
$$\mathop {\sup }\limits_{\left( \cdot \right)} |{\alpha _{ij}}\left( \cdot \right)| < \infty \left( {i,j \in 1,n} \right),\mathop {\sup }\limits_{\left( \cdot \right)} |{\beta _{ij}}\left( \cdot \right)| < \infty \left( {i \in 1,n,j \in 1,n - p} \right).$$
It is assumed that A(·) ∈ Z 1Z 3 and A*(·) ∈ Z 1Z 3, where Z 1 is the class of matrices in which the first p elements of the kth superdiagonal are sign-definite and the elements above them are sufficiently small. The class Z 3 differs from Z t1 in that the elements between this superdiagonal and the (k + 1)th row are sufficiently small. If k > p, then the elements of the p × p square in the upper left corner of the matrix are sufficiently small as well. By using special quadratic Lyapunov functions, a matrix D for which y(t)–x(t) → 0 exponentially as t → ∞ is first found, and then a matrix S for which the vectors x(t) and y(t) have the same property is constructed.
  相似文献   

18.
Let J be the Lévy density of a symmetric Lévy process in \(\mathbb {R}^{d}\) with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator
$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$
where κ(x, z) is a Borel function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) satisfying 0 < κ 0κ(x, z) ≤ κ 1, κ(x, z) = κ(x,?z) and |κ(x, z) ? κ(y, z)|≤ κ 2|x ? y| β for some β ∈ (0, 1]. We construct the heat kernel p κ (t, x, y) of \(\mathcal {L}^{\kappa }\), establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p κ .
  相似文献   

19.
Let Λ={λ 1,…,λ p } be a given set of distinct real numbers. This work deals with the problem of constructing a real matrix A of order n such that each element of Λ is a Pareto eigenvalue of A, that is to say, for all k∈{1,…,p} the complementarity system
$x\geq \mathbf{0}_n,\quad Ax-\lambda_k x\geq \mathbf{0}_n,\quad \langle x, Ax-\lambda_k x\rangle = 0$
admits a nonzero solution x∈? n .
  相似文献   

20.
Let L be a Schrdinger operator of the form L =-? + V acting on L~2(R~n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R~n) denote the BMO space associated to the Schrdinger operator L on R~n. In this article, we show that for every f ∈ BMO_L(R~n) with compact support, then there exist g ∈ L~∞(R~n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R~n), where S_(μ,P)=∫(R_+~(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-~(t(L)~(1/2))}t0 on L~2(R~n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R~n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号