首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
De AK  Sen AK 《Talanta》1966,13(6):853-856
A method is proposed for the rapid extraction and separation of microgram amounts of niobium(V). The niobium is extracted quantitatively by 100 % TBP from 7.7-9.4 M (initial) hydrochloric acid and determined spectrophotometrically as the thiocyanate in TBP-acetophenone solution. Beer's Law is obeyed at 430 mmu over the range 0.8-9.0 mug ml . The system is stable for 72 hr. Caesium, calcium, strontium, barium, aluminium, titanium(IV), zirconium(IV), cerium(TV), fluoride, thiocyanate and oxalate do not interfere (1 mg). Niobium(V) can be determined in a niobium(V)-tantalum(V) mixture. The method is accurate and reproducible to within +/-2%.  相似文献   

2.
Niobium(III) solutions can be used in direct titrations of copper(II), iron(III), thallium(III), moIybdenum(VI), vanadium(V) and uranium(VI) in milligram amounts. Phenosafranine is generally satisfactory as the indicator, but potentiometric end-points can also be used. Copper and iron can be determined successively when a mixed indicator containing phenosafranine and méthylene blue is used. Thallium(I) and thallium (III) can be determined in mixtures. The niobium (III) solutions are stable for several days under a carbon dioxide atmosphere.  相似文献   

3.
Ivsić AG  Tamhina B 《Talanta》1991,38(12):1403-1407
The extraction of niobium(V) from aqueous hydrochloric and sulphuric acid solutions with 3-hydroxy-2-methyl-1-(4-tolyl)-4-pyridone (HY) dissolved in chloroform is described. Niobium(V) can be quantitatively extracted with HY in the form of two different complexes depending on the chloride ion concentration in the aqueous phase. At a low chloride concentration or without chloride in the aqueous phase niobium(V) is extracted with HY in the form of Nb(OH)3Y2 and at a high chloride concentration as a mixed Nb(OH)3ClY complex. Niobium extraction with HY enables the separation of niobium(V) from zirconium(IV) and hafnium(IV). The formation of a mixed chloro-4-pyridone complex is also applicable for the spectrophotometric determination of niobium in the organic phase at the maximum absorption at 350 nm.  相似文献   

4.
Yatirajam V  Ram J 《Talanta》1974,21(6):439-443
A simple and selective extraction of molybdenum is described. Tungsten is masked with tartaric acid and molybdenum(VI) is reduced in 2M hydrochloric acid by boiling with hydrazine sulphate. Iron, copper and vanadium are then masked with ascorbic acid, thiourea and potassium hydrogen fluoride respectively. The molybdenum(V) is extracted as its xanthate complex into chloroform, from 1M hydrochloric acid that is 0.4M potassium ethyl xanthate. The complex is decomposed by excess of liquid bromine, and the molybdenum is stripped into alkaline hydrogen peroxide solution. The molybdenum is then determined by standard methods. Large amounts of Cu(II), Mn(II), Fe(III), Ti(IV), Zr, Ce(IV), V(V), Nb, Cr(VI), W(VI), U(VI), Re(VII) and Os(VIII) do not interfere. Several synthetic samples and ferromolybdenum have been rapidly and satisfactorily analysed by the method.  相似文献   

5.
Ahmad A  Nwabue FI  Ezeife GE 《Talanta》1984,31(4):265-268
A fairly sensitive and selective method for rapid determination of tracer amounts of molybdenum(V) as mixed-ligand complexes with thiocyanate and 4-unsubstituted-5-pyrazolones is described. The red complexes are extractable into chloroform from 1-5M hydrochloric or perchloric acid or 1-3M sulphuric arid media. The molar absorptivities are in the range 1.72-2.15 x 10(4)l.mole(-1).cm(-1) at 455 nm (lambda(max)). The method has been applied to the estimation of molybdenum in various synthetic and alloy-steel samples. In presence of excess of the reagent, Cu(II), Co(II), Mn(II), Fe(II), Fe(III), Al(III), Cr(III), Cr(VI), Ti(III), Ti(IV), Zr(IV), Hf(IV), V(III), V(IV), V(V), Nb(V), Ta(V), W(VI) and U(VI) do not interfere.  相似文献   

6.
Victor AH  Strelow FW 《Talanta》1981,28(4):207-214
Zinc and lead can be separated from Cd, Bi(III), In and V(V) by eluting these elements with 0.2M hydrochloric acid in 60% acetone from a column of AG50W-X8 cation-exchange resin, zinc and lead being retained. Mercury(II), Tl(III), As(III), Au(III), Sn(IV), Mo(VI), W(VI) and the platinum metals have not been investigated quantitatively, but from their distribution coefficients, should also be eluted. Vanadium(V), Mo(VI) and W(VI) require the presence of hydrogen peroxide. Zinc and lead can be eluted with 0.5M hydrochloric acid in 60% acetone or 0.5M hydrobromic acid in 65% acetone and determined by AAS; the alkali and alkaline-earth metal ions, Mn(II), Co, Ni, Cu(II), Fe(III), Al, Ga, Cr(III), Ti(IV), Zr, Hf, Th, Sc, Y, La and the lanthanides are retained on the column, except for a small fraction of copper eluted with zinc and lead. Separations are sharp and quantitative. The method has successfully been applied to determination of zinc and lead in three silicate rocks and a sediment.  相似文献   

7.
A differential pulse polarographic method has been developed for the quantitative determination of niobium in pyrochlore ore. One-step polarographic curves were obtained in 0.01 mol L(-1) EDTA as supporting electrolyte. Analytical curves indicated that response was linearly dependent on Nb(V) concentration between 1.6 and 8.6 mg L(-1) in the pH range 2-5. The system is quasi-reversible and controlled by diffusion in 0.01 mol L(-1) EDTA as supporting electrolyte; the electrode process involves one-electron reduction of Nb(V) to Nb(IV). The results obtained so far for niobium in pyrochlore ore were comparable with those obtained by X-ray fluorescence determination. Ions such as Fe(III), Cr(III), As(III), Cu(II), Ni(II), Co(II), Mn(II), Sn(IV), Zn(II), V(V), Ta(V), W(VI), Ce(IV), and Ti(IV) did not interfere. Possible interference from Pb(II) can be avoided by complexation with the supporting electrolyte in the pH range 3.5 to 4.6; Mo(VI) ions can be tolerated when their concentration is one-tenth that of Nb(V).  相似文献   

8.
Summary Separation of bismuth(III) from iron(III), molybdenum(VI), vanadium(V), chromium(VI), titanium(IV), antimony(III), lead(II), beryllium(II), uranium(VI), hafnium(IV), indium(III) and zirconium (IV) is achieved by solvent extraction with high molecular weight amines from sodium succinate solution adjusted to suitable pH. Bismuth(III) is stripped from the organic phase and determined spectrophotometrically. The method is shown to be applicable to bismuth alloys.
Extraktion und Trennung von Wismut(III) aus Stahl und wismuthältigen Legierungen
Zusammenfassung Wismut(III) läßt sich von Fe(III), Mo(VI), V(V), Cr(VI), Ti(IV), Sb(III), Pb(II), Be(II), U(VI), Hf(IV), In(III) und Zr(IV) durch Extraktion mit hochmolekularen Aminen aus Natriumsuccinat bei geeignetem pH trennen. Bi(III) wird dann von der organischen Phase getrennt und spektralphotometrisch bestimmt. Das Verfahren eignet sich für Wismutlegierungen.
  相似文献   

9.
Vanadium(III) obtained by dithionite reduction of vanadium(V) can be extracted as its ferron complex with tribenzylamine in chloroform from 0.05 M sulphuric acid. Vanadium (0–5 μg ml-1) is determined spectrophotometrically at 430 nm with a sensitivity of 0.0028 μg V cm-2. Al(III), Co(II), Ni(II), Fe(II, III), Hg(II), Si(IV), Be(II), Mg(II), Ca(II), Sr(II), Ba(II), Cr(VI, III), W(VI), Zn(II), U(VI), Mn(II). Pb(II), Cu(II), Cd(II) and Th(IV) do not interfere; only Mo(VI), Ti(IV), Zr(IV). Bi(V) and Sn(II) interfere. A single determination takes only 7 min. The extracted complex is VIII (R-3H.TBA)3 where R = C9H4O4NSI. The method is satisfactory for the determination of vanadium in steels, alum and other samples without preliminary separations.  相似文献   

10.
Savariar CP  Joseph J 《Talanta》1970,17(1):45-50
N-Acetylsalicyloyl-N-phenylhydroxylamme is proposed for the separation of niobium(V) and tantalum(V) and their gravimetric determination. Niobium is precipitated at pH 5.5-6.5 by the reagent and the complex is weighed directly. Tantalum is precipitated from 1-2M hydrochloric acid solutions and the complex is ignited to tantalum pentoxide. The method is fairly selective. In the presence of thiocyanate the reagent forms an extractable complex with niobium. The reaction forms the basis of a selective and sensitive spectrophotometric determination of niobium.  相似文献   

11.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

12.
Strelow FE  Wienert CH  van der Walt TN 《Talanta》1974,21(11):1183-1191
Indium can be separated from Zn, Pb(II), Ga, Ca, Be, Mg, Ti(IV), Mn(II), Fe(III), Al, U(VI), Na, Ni(II) and Co(II) by selective elution with 0.50M hydrochloric acid in 30% aqueous acetone from a column of AG50W-X8 cation-exchange resin, all the other elements being retained by the column. Lithium is included in the elements retained by the column when 0.35M hydrochloric acid in 45% aqueous acetone is used for eluting indium, but the elution of indium is slightly retarded. Ba, Sr, Zr, Hf, Th, Sc, Y, La and the lanthanides, Rb and Cs should also be retained according to their distribution coefficients. Cd, Bi(III), Au(III), Pt(IV), Pd(II), Rh(III), Mo(VI) and W(VI) can be eluted with 0.20M hydrobromic acid in 50% aqueous acetone before the elution of indium, and Ir(III), Ir(IV), As(III), As(V), Se(IV), Tl(III), Hg(II), Ge(IV), Sb(III) and Sb(V), though not investigated in detail, should accompany these elements. Relevant distribution coefficients and elution curves and results for analyses of synthetic mixtures of indium with other elements are presented.  相似文献   

13.
Donaldson EM 《Talanta》1988,35(8):633-639
A method for determining approximately 0.01 mug/g or more of selenium in ores, concentrates, rocks, soils, sediments and related materials is described. After sample decomposition selenium is reduced to selenium(IV) by heating in 4M hydrochloric acid and separated from the matrix elements by toluene extraction of its 5-nitropiazselenol complex from approximately 4.2M hydrochloric acid. After the extract has been washed with 2% nitric acid to remove residual iron, copper and chloride, the selenium in the extract is oxidized to selenium(VI) with 20% bromine solution in cyclohexane and stripped into water. This solution is evaporated to dryness in the presence of nickel, and selenium is ultimately determined in a 2% v/v nitric acid medium by graphite-furnace atomic-absorption spectrometry at 196.0 nm with the nickel functioning as matrix modifier. Common ions, including large amounts of iron, copper and lead, do not interfere. More than 1 mg of vanadium(V) and 0.25 mg each of platinum(IV), palladium(II), and gold(III) causes high results for selenium, and more than 1 mg of tungsten(VI) and 2 mg of molybdenum(VI) causes low results. Interference from chromium(VI) is eliminated by reducing it to chromium(III) with hydroxylamine hydrochloride before the formation of the selenium complex.  相似文献   

14.
A neutral polystyrene resin column, dynamically loaded with dipicolinic acid at a concentration of 0.1 mM in 1 M potassium nitrate eluent, was investigated for the separation characteristics of a number of high valence metal cations over the pH range 0-3. The metal species studied were Th(IV), U(VI), Zr(IV), Hf(IV), Ti(IV), Sn(IV), V(IV) and V(V), Fe(III) and Bi(III), of which Ti(IV), Sn(IV), V(IV) and Fe(III) did not show any retention. For the remaining metal ions, significant retention was obtained with good peak shapes, except for Th(IV), which moved only slightly from the solvent front with some tailing. The retention order at pH 0.3 was Th(IV) < V(V) < Bi(III) < U(VI) < Hf(IV) < Zr(IV). A notable feature of this separation system was the high selectivity shown for uranium, zirconium and hafnium, the last two being nearly resolved in 15 min on the relatively short 10 cm column.  相似文献   

15.
Distribution of molybdenum(VI) (0.05 M) upon extraction with tributyl phosphate from fl uoride solutions with a content of titanium(IV), niobium(V), and tantalum(V) of up to 3.0, 0.7, and 0.7 M, respectively, was studied.  相似文献   

16.
Vrchlabský M  Sommer L 《Talanta》1968,15(9):887-894
Methods are given for the extraction of iron(III), molybdenum(VI), titanium(IV), niobium(V), vanadium(IV), uranium(VI) and tungsten(VI) as ternary complexes with catechol and a quaternary cation such as n-butyltriphenylphosphonium, n-propyltriphenylphosphonium, tetraphenylarsonium, cetylpyridinium, cetyltrimethylammonium and 2,3,5-triphenyltetrazolium, the solvent being chloroform. By use of masking agents and pH control, some of these elements can be separated from each other by this means.  相似文献   

17.
Vin YY  Khopkar SM 《Talanta》1991,38(9):971-975
A novel method is developed for the reversed-phase extractive chromatographic separation of niobium and tantalum with bis(2-ethylhexyl)phosphoric acid. Niobium is extracted from 1-10M hydrochloric acid and can be stripped with 3M sulphuric acid containing 2% hydrogen peroxide. Tantalum is extracted from 0.1-2M hydrochloric acid and can be stripped with 0.1M hydrochloric acid containing 2M tartaric acid. It is possible to separate niobium and tantalum, in different ratios, from multicomponent mixtures.  相似文献   

18.
Amberlite XAD-7 resin was impregnated with p-tert-butylsulfinylcalix[4]arene. Niobium(V) was collected on the impregnated resin in yields of more than 90% around pH 5.4, whereas tantalum(V) was negligibly collected. The collected niobium(V) was desorbed with 9 M sulfuric acid nearly quantitatively, hence the separation of niobium(V) from tantalum(V) was successfully achieved.  相似文献   

19.
Extraction of Co(II) by diphenyl-2-pyridylmethane (DPPM) in benzene form mineral acid solutions containing potassium thiocyanate has been studied at room temperature (23±2°C). Its extraction from mineral acids alone is rather poor. Optimal aqueous phase composition for the quantitative extraction of Co(II) by 0.1M DPPM is 0.1M acid+0.2M KSCN. Stoichiometric studies indicate that an ionic type complex, (DPPM·H)2·Co(SCN)4, is responsible for extraction. The metal can be back-extracted from the organic phase by aqueous acetate, citrate or oxalate solutions. Separation factors from other metals determined under optimal conditions reveal that Co(II) can be quantitatively separated from CsI), Sr(II), Cr(III), Ln(III), Zr(IV), Hf(IV), Cr(VI) and Tc(VII), Mo(VI), Zn(II), Au(III), Hg(II) and U(VI) are, however, coextracted and hence should be previously removed by other techniques or reagents.  相似文献   

20.
Leong CL 《Talanta》1971,18(8):845-848
A ternary complex between germanium, Catechol Violet (CV) and cetyltrimethylanunoniuni bromide is proposed for the determination of germanium. The stoichiometric ratio Ge:CV is 1:2. Beer's law is obeyed from 0.1 to 1.0 ppm of Ge. The method is highly selective. Interference from Sn(IV), Fe(III), Bi(III), Cr(VI), Mo(VI), V(V) and Sb(III) in mg amounts is eliminated by extracting the germanium into carbon tetrachloride from 9M HC1 and then stripping into water before the photometric determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号