首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vanadium dioxide (VO2) thin films were deposited on silicon (100) substrate using the pulsed laser deposition technique. The thin films were deposited at different substrate temperatures (500°C, 600°C, 700°C, and 800°C) while keeping all the other parameters constant. X‐ray diffraction confirmed the crystalline VO2 (B) and VO2 (M) phase formation at different substrate temperatures. X‐ray photoelectron spectroscopy analysis showed the presence of V4+ and V5+ charge states in all the deposited thin films which confirms that the deposited films mainly consist of VO2 and V2O5. An increase in the VO2/V2O5 ratio has been observed in the films deposited at higher substrate temperatures (700°C and 800°C). Scanning electron microscope micrographs revealed different surface morphologies of the thin films deposited at different substrate temperatures. The electrical properties showed the sharp semiconductor to metal transition behavior with approximately 2 orders of magnitude for the VO2 thin film deposited at 800°C. The transition temperature for heating and cooling cycles as low as 46.2°C and 42°C, respectively, has been observed which is related to the smaller difference in the interplanar spacing between the as‐deposited thin film and the standard rutile VO2 as well as to the lattice strain of approximately −1.2%.  相似文献   

2.
Ni‐based superalloys with niobium (Nb) or/and yttrium (Y) were prepared by vacuum melting. The oxidation kinetics of these alloys was studied by thermogravimetry at 800 °C for 100 h in static air. Morphology of oxides was studied using SEM, and the composition was analyzed by X‐ray diffraction. Energy‐dispersive X‐ray spectrometer was employed to examine the linear element distribution of the cross section of the oxidation films. Results showed that the oxidation kinetics all followed a parabolic law at different stages. The oxide films were mainly comprised of Cr2O3, NiCr2O4, Al2O3 and TiO2. All the oxide films exhibited layered structure owing to different oxidation stages. With the addition of Nb or Y, the high‐temperature oxidation resistance of the superalloy was improved significantly and the surface morphology of the oxidation film was ameliorated. The comprehensive effect of Nb and Y was remarkable in improving the high‐temperature oxidation resistance of Ni‐based alloys. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Perovskite (K, Na)NbO3 (KNN) thin films (~100 nm) were prepared by sol–gel/spin coating process on Pt/SiO2/Si substrates and annealed at 650 °C. The structural properties of KNN films were confirmed by X‐ray diffraction analysis (XRD), Raman spectroscopy and scanning electron, transmission electron and atomic force microscopy (SEM, TEM and AFM) analysis. Pure perovskite phase of K0.65Na0.35NbO3 in nonstoichiometric composition with monoclinic symmetry in film was revealed. Uniform homogeneous microstructure of KNN film with the roughness (~6.9 nm) contained spherical particles (~50–90 nm). Nanoindentation technique was used to characterize the mechanical properties of KNN films. Elastic modulus and hardness of Pt, SiO2 and KNN thin films were calculated from their composite values of KNN/Pt/SiO2/Si film/substrate system. The modulus and hardness of KNN film (71 and 4.5 GPa) were lower in comparison with SiO2 (100 and 7.5 GPa). Pt film (~30 nm) did not influence the composite modulus, but had effect on hardness of KNN film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The hydrogenated amorphous carbon nitride (a‐CNx:H) thin films were synthesized on the SS‐304 substrates using a dense plasma focus device. The a‐CNx:H thin films were synthesized using CH4/N2 admixture gas and 20 focus deposition shots on substrates placed at different distances from the anode top. X‐ray photoelectron spectroscopy and Raman analysis confirmed different C–N bonding in the a‐CNx:H thin films. A decrease in the N/C ratio as well as the sp3/sp2 ratio with an increase in the substrate distance has been observed. The higher amount of C–N formation for the film synthesized at 10 cm is observed which decreases with increasing distance. The X‐ray photoelectron spectroscopy and Raman analysis affirmed the C ≡ N presence in all the thin films synthesized at different distances. The morphology of the synthesized a‐CNx:H thin films showed nanoparticles and nanoparticle clusters formation at the surface. The hardness results showed comparatively lower hardness of the a‐CNx:H thin films due to the presence of C ≡ N. The C–N formation with lower amount of C ≡ N and a higher N/C ratio as well as a higher sp3/sp2 ratio for the films synthesized at 10 cm show reasonably higher hardness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
CuAlO2 thin films were deposited on quartz substrates by sol–gel process using copper acetate monohydrate and aluminum nitrate nanohydrate as starting materials and isopropyl alcohol as solvent. The influence of annealing temperature on the film structure and the phase evolution of CuAlO2 films were investigated, so as to obtain CuAlO2 films with superior performance. The phase compositions of the films were dependent on the annealing temperature. The films annealed at temperatures below 400 °C were amorphous while those annealed above 400 °C were polycrystalline. The phases of CuO and CuAl2O4 appeared gradually with the increase of annealing temperature. When the heat treatment temperature was elevated to 900 °C, the uniform and dense films with single phase of CuAlO2 were obtained, with a resistivity of 15 Ωcm. The transmittance of the 310 nm-thick CuAlO2 film is 79% at 780 nm and the direct optical band gap is 3.43 eV.  相似文献   

7.
Carbon steels (CSs) were anodized in an ethylene glycol solution containing 3 vol.% H2O and 0.1 m NH4F to coat with nanotube arrays film. The as anodized nanotube arrays film were annealed in argon atmosphere at various temperatures ranging from 250 to 550 °C for 4 h. The morphology and crystal phases of the film developed after annealing processes were examined using field emission scanning electron microscopy, X‐ray diffraction. Morphology transforms from nanobube arrays to nanotube bundles at 250 °C, to nanobube bundles with nanoflakes at 350 and 450 °C, to nanotube bundles with nanobelts at 550 °C. Amorphous transformed completely into maghemite at 350 °C and hematite with minor magnetite at 450 and 550 °C. Diffuse reflectance ultraviolet and visible spectra revealed iron oxide nanotube film annealed at 350 °C, or higher than 350 °C behaved tremendous absorbance ability in visible spectra range. Mott–Schottky analysis and linear scan voltammetry were performed in 1 m NaOH to show that iron oxide nanotube film annealed at 450 °C exhibited best charge carrier transfer ability upon illumination and superior photoelectrochemical properties compared with the films annealed at other temperatures. The film annealed at 450 °C displayed the photocurrent density of 0.13 mA cm?2 at 0.2 VAg/AgCl, but the film annealed at other temperatures with the photocurrent densities of lower than 0.05 mA cm?2 at 0.2 VAg/AgCl. The morphology and phase transform of iron oxide nanotube film at different annealing temperature results in the change of their photoelectrochemical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Zirconia/polydopamine (ZrO2/PDA) nanocomposite multilayer films were constructed on Si substrate via a novel nonelectrostatic layer‐by‐layer (NELBL) assembly technique. The building block of this technique is the newly reported dopamine molecule, which can be attached to almost all material surfaces and undergo oxidation‐polymerization to form PDA layers; more importantly, the outer hydroxyl groups of the PDA layer can chelated with certain inorganic oxide nanoparticles to generate oxide films. Thus, ZrO2/PDA nanocomposite multilayer films were fabricated by sequential NELBL deposition of PDA and ZrO2 nanoparticles. The formation of the ZrO2/PDA nanocomposite multilayer films was monitored by the water contact angle (WCA) and ellipsometric thickness measurements, while the microstructure of the fabricated films was analyzed by means of atomic force microscope (AFM), field emission scanning electron microscope (FESEM), X‐ray photoelectron spectrum (XPS), and X‐ray diffraction (XRD) analysis. The mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers were found to be greatly enhanced as compared with that of the annealed homogeneous ZrO2 film. The better mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers than the annealed homogeneous ZrO2 film may be closely related to their special microstructure. Namely, the organic–inorganic hybrid microstructure of the annealed ZrO2/PDA nanocomposite multilayers may largely account for the increased nanohardness and corrosion resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Thin films of cobalt (10, 40, and 100 nm) are deposited on Si substrate by electron beam physical vapor deposition technique. After deposition, 4 pieces from each of the wafers of silicon substrate were cut and annealed at a temperature of 200°C, 300°C, and 400°C for 2 hours each, separately. X‐ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) are used to study the structural and morphological characteristics of the deposited films. To obtain TEM images, Co films are deposited on Cu grids; so far, no such types of TEM images of Co films are reported. Structural studies confirm nanocrystalline nature with hexagonal close packed structure of the deposited Co film at lower thickness, while at higher thickness, film structure transforms to amorphous with lower surface roughness value. The particle sizes in all the cases are in the range of 3 to 5 nm. Micro‐Raman spectroscopy is also used to study the phase formation and chemical composition as a function of thickness and temperature. The results confirm that the grown films are of good quality and free from any impurity. Studies show the silicide formation at the interface during deposition. The appearance of new band at 1550 cm−1 as a result of annealing indicates the structural transformation from CoSi to CoSi2, which further enhances at higher annealing temperatures.  相似文献   

10.
The adsorption process of two polycations (pDADMAC and C‐PAM) with different charge densities has been investigated using the quartz crystal microbalance technique with dissipation monitoring (QCM‐D). The effect of the charge density of the polycation, the NaCl concentration, and the complexation with an anionic surfactant are addressed in this work. X‐ray photoelectron spectroscopy and atomic force microscopy were utilized to analyze the adsorbate with respect to the film coverage and film structure. The corrosion‐inhibiting performance of the films on high‐purity iron in a CO2 saturated brine, at 25°C, 1 bar CO2, and pH 4, was investigated by the linear polarization resistance technique. It was found that the polycations adsorbed onto the iron surface, but the corrosion rate of 1 mm yr?1 was not lowered. However, the polycations formed a complex with an anionic surfactant, and such films showed excellent inhibition performance. Both films, of pDADMAC/SDS and of C‐PAM/SDS, lowered the corrosion rate of iron below 0.01 mm yr?1. The SDS concentration was below the cmc. It is believed that the SDS adsorbed into the preadsorbed polycation film, forming a complex structure resulting in a hydrophobic and dense film.  相似文献   

11.
Well‐ordered TiO2 nanotubes were prepared by the electrochemical anodization of titanium in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 20 min, followed by annealing. The surface morphology and crystal structure of the samples were examined as a function of the annealing temperature by field emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD), respectively. Crystallization of the nanotubes to the anatase phase occurred at 450 °C, while rutile formation was observed at 600 °C. Disintegration of the nanotubes was observed at 600 °C and the structure vanished completely at 750 °C. Electrochemical corrosion studies showed that the annealed nanotubes exhibited higher corrosion resistance than the as‐formed nanotubes. The growth of hydroxyapatite on the different TiO2 nanotubes was also investigated by soaking them in simulated body fluid (SBF). The results indicated that the tubes annealed to a mixture of anatase and rutile was clearly more efficient than that in their amorphous or plain anatase state. The in vitro cell response in terms of cell morphology and proliferation was evaluated using osteoblast cells. The highest cell activity was observed on the TiO2 nanotubes annealed at 600 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
孙捷  孙迎春 《中国化学》2004,22(7):661-667
Introduction Inorganic oxide films have attracted a lot of interest in the last several decades. Among them, silicon dioxide films are widely used in modern microelectronics, optics and mechanics. This material has been grown by various methods including thermal oxidation, chemical vapor phase deposition, plasma-enhanced chemical vapor phase deposition, and so on.1,2 Recently, Nagayama et al.3 have reported that SiO2 thin films could be produced by a new chemical method of liquid phase depos…  相似文献   

13.
X‐ray diffraction measurements were performed using synchrotron radiation at the SPring‐8 facility and electrochemical techniques to investigate the effect of polishing methods and storage conditions on the crystal structure of air‐formed oxide films and anodic oxide films formed on highly pure aluminum. Storage in an N2 environment hinders local film breakdown during anodizing, and it was established that the X‐ray diffraction measurements showed the presence of a γ‐Al2O3 in the anodic oxide film formed on mechanically polished (MP) specimens. Formation of γ‐Al2O3 during anodizing was inhibited by electropolishing because of the removal of the work‐hardened layer that was formed on the MP by electro‐polishing. The X‐ray diffraction results do not show clear differences in the influence of the polishing method on the crystal structure of air formed oxide film. This is due to the very fast oxidation rate of the air‐formed oxide film and very long storage times for the X‐ray measurements. The anodic oxide film formed on aluminum, which has a very flat surface, shows color and the color depended on grain orientation. The electrochemical impedance of the MP specimen is slightly lower than that of the mechanically and then electrochemically polished specimen at the middle frequency range. This impedance difference may be due to formation of γ‐Al2O3 in the amorphous anodic oxide film and the thickness of the film. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Thiourethane‐based thiol‐ene (TUTE) films were prepared from diisocyanates, tetrafunctional thiols and trienes. The incorporation of thiourethane linkages into the thiol‐ene networks results in TUTE films with high glass transition temperatures. Increases of Tg were achieved by aging at room temperature and annealing the UV cured films at 85 °C. The aged/annealed film with thiol prepared from isophorone diisocyanate and cured with a 10,080‐mJ/cm2 radiant exposure had the highest DMA‐based glass transition temperature (108 °C) and a tan δ peak with a full width at half maximum (FWHM) of 22 °C, indicating a very uniform matrix structure. All of the initially prepared TUTE films exhibited good physical and mechanical properties based on pencil hardness, pendulum hardness, impact, and bending tests. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5103–5111, 2007  相似文献   

15.
Polymeric materials have been found to be ideal candidates for the synthesis of organic–inorganic nanomaterials. We have obtained Co3O4‐decorated graphene oxide (GO) nanocomposites by a simple polymer combustion method. Polyvinyl alcohol (PVA) of two different molecular weights, 14,000 and 125,000, was used for the synthesis. The pristine sample was annealed at 300, 500, and 800°C. PVA has played an important role in the formation of GO and Co3O4 nanoparticles. Synthesized Co3O4–GO nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared, Raman, electron paramagnetic resonance, transmission electron microscopy, and vibrating sample magnetometry. Reflection peaks at 12° and 37° in an X‐ray study confirm the formation of Co3O4–GO. Raman study validates the presence of GO in nanocomposites of Co3O4–GO. Room temperature ferromagnetism was observed in all annealed samples. The highest coercivity of 462 G was observed for 300°C annealed samples as compared with bulk Co3O4. On the basis of the results obtained, a mechanism of formation is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Bi-layered ferroelectric Bi3TiTaO9 (BTT) thin films with different thickness (ranging from 100 to 400 nm) were successfully fabricated on Pt(111)/TiO2/SiO2/(100)Si substrates using chemical solution deposition (CSD) technique at different annealing temperatures. The c-axis orientation of the films was affected by film thickness and process temperature. The thinner the film and the higher the process temperature, the higher the c-axis orientation. With the increase of film thickness, the stress decreased but the film roughness increased, which led to the decrease of c-axis orientation of films. BTT films annealed at 800°C were found to have much improved remament polarization (P r ) than that of films annealed at 650 and 750°C. The P r and coercive field (E c ) values were measured to be 2 μC/cm2 and 100 kV/cm, respectively. BTT films showed well-defined ferroelectric properties with grain size larger than 100 nm.  相似文献   

17.
Europium aluminium garnet (Eu3Al5O12, EAG) was synthesized by an aqueous sol‐gel process and subsequent thermal annealing at 800 – 850 °C. Eu3Al5O12 crystallizes cubic ( and its crystal structure was refined from X‐ray powder data. The refined oxygen position in the structure of EAG yields four shorter and four longer distances between europium and the eight surrounding oxygen atoms, forming a distorted dodecahedron. Pure Eu3Al5O12 can be treated at temperatures around 1000 °C before it converts into perovskite‐like EAP near 1300 °C.  相似文献   

18.
An effective chemical route to nanostructured tungsten oxide films derived from a peroxopolytungstic acid (PTA)/thiourea precursor solution is demonstrated. The conventional procedure of preparing the precursor needs more than 24 h for well‐mixing and refluxing the PTA‐based solution, while the thiourea‐assisted approach takes less than 1 h to prepare the precursor solution because the excess hydrogen peroxide can be efficiently eliminated by oxidation of thiourea. With the precursor solution, tungsten oxide films are deposited by spin coating followed by high temperature annealing. The film annealed at 400 °C possesses a porous nanostructure of nanocrystalline tungsten oxide embedded in an amorphous tungsten oxide matrix, which arises from the gaseous species released through decomposition of thiourea oxides during annealing. The 400 °C‐annealed, thiourea‐assisted tungsten oxide film exhibits electrochromic (EC) properties superior to those of the film prepared without thiourea, including large transmittance modulation and coloration efficiency, fast response time and adequate reliability. When increasing the annealing temperature to 450 °C, the thiourea‐assisted tungsten oxide film is also porous but well‐crystallized and shows inferior EC properties. Electrochemical impedance spectroscopy analysis indicates that, in addition to the porous structure, a fast charge‐transport rate within the solid portion of the 400 °C‐annealed nanostructured film plays a crucial role in enhancing EC performances of the thiourea‐assisted tungsten oxide film.  相似文献   

19.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

20.
We prepared stoichiometric lithium nickel vanadate amorphous thin films by using r.f. magnetron sputtering under controlled oxygen partial pressure. The amorphous films were heated at various temperatures, 300–600 °C, for 8 h. The as‐deposited and annealed thin films were characterized by Rutherford backscattering spectroscopy, nuclear reaction analysis, Auger electron spectroscopy, X‐ray diffraction, scanning electron microscopy and atomic force microscopy. The electrochemical behavior of the various films was studied by the galvanostatic method. The cells were tested in a liquid electrolyte at room temperature, with lithium metal used as the counter and reference electrode. The best electrochemical storage value was obtained with the thin film annealed at 300 °C, which showed superior capacity and small capacity loss during cycling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号