首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The two major modes of retention of basic compounds in reversed-phase liquid chromatography on both octadecyl silane bonded silica-based (ODS) and polybutadiene coated zirconia (PBD-ZrO2) materials are hydrophobic and ion-exchange (Coulombic) interactions. Although the influence of reversed-phase and Coulombic interactions on the chromatography of organic cations is qualitatively well recognized, the quantitative relationship between hydrophobic and ion-exchange interactions remains unclear. In this work, the retention mechanisms on both of the above types of phases were probed by studying the retention of a homologous series of p-alkylbenzylamines as a function of the ammonium concentration in the eluent. The various columns tested were studied in terms of plots of retention factor vs. the inverse of the displacingcation concentration. The analysis of such plots as well as plots of log k' vs. number of methylene groups in the solutes and plots of log k' vs. log[NH4+] clearly shows that at least two types of sites--a pure reversed-phase site and a "hydrophobically-assisted ion-exchange site" similar to the type of site described by Neue [J. Chromatogr. A 925 (2001) 49] are needed to explain the observations. In addition, we have found a quantitative measure of the relative amount of reversed-phase and ion-exchange interaction on a given solute has on a given stationary phase which allows unambiguous classification of columns. It is now clear that ion-exchange contributions to retention on PBD-ZrO2, sometimes exceeding 90%, are even more important than previously thought and relative to hydrophobic interaction much more significant on PBD-ZrO2 than on ODS type-B silicas.  相似文献   

2.
Complex analyses of polar compounds, especially basic ones, require more selective stationary phases. The present paper describes a stationary phase prepared by thermal immobilization of poly(methyltetradecylsiloxane) onto chromatographic silica (PMTDS-SiO(2)). This stationary phase presents hydrophobic and ion-exchange interactions that confer both high retention and unique selectivities for basic solutes. The influence of ion-exchange interactions is confirmed by the increase in retention factors of basic solutes when the mobile-phase pH changes from acidic to neutral and by the decrease in retention factors when the mobile-phase pH changes from neutral to alkaline. The ion-exchange properties of the stationary phase are enriched in neutral mobile phase (pH 7-7.5) using soft Lewis bases such as tricine and tris as buffers but are suppressed in both acidic (pH 2.5-6) and highly alkaline mobile phases (pH≤10). Increasing both temperature and flow rate permits more rapid separations while maintaining the selectivity. The stability of the stationary phase is evaluated with acid, neutral and alkaline mobile phases.  相似文献   

3.
陈红  李来生  张杨  周仁丹 《色谱》2012,30(10):1062-1067
将新制备的厚朴酚键合硅胶固定相(MSP)用于嘌呤、嘧啶、蝶呤及黄酮类化合物的液相色谱分离分析。选取了4种嘌呤、8种嘧啶、4种蝶呤及5种黄酮类药物作为极性化合物的代表,以商品反相碳十八烷基键合硅胶柱(ODS)作参照,研究了新固定相对碱性化合物的选择性和相关分离机理。实验发现,在简单流动相条件下,厚朴酚键合硅胶固定相对上述药物表现出较高的选择性及分离效果。尽管MSP没有进行封尾处理,但含氮类极性化合物(嘌呤、嘧啶、蝶呤)仍表现出基本对称的色谱峰形。多数药物在两柱上的洗脱顺序大致相同,说明疏水作用始终存在,这说明新固定相具有反相色谱性能。比较研究还发现,MSP在分离上述极性药物时能够提供除疏水性作用之外的其他作用位点。例如,在分离嘌呤、嘧啶及蝶呤时,氢键和偶极作用明显存在;同时MSP与溶质结构中的芳环(硫唑嘌呤、紫花牡荆素)之间有较强的π-π电子相互作用等,使得含氮类极性化合物和黄酮的保留一般比ODS强,分离度也有一定的改善。多种作用可以合理地解释MSP柱对极性溶质有更强的分离能力,厚朴酚键合硅胶固定相可在一定程度上弥补ODS单一疏水作用的不足,有利于分类碱性化合物。  相似文献   

4.
Allen D  El Rassi Z 《The Analyst》2003,128(10):1249-1256
Three different synthetic routes have been introduced and evaluated for the preparation of amphiphilic silica-based monoliths possessing surface-bound octadecyl ligands and positively charged groups. The amphiphilic silica monoliths (designated as cationic C18-monoliths) have been designed for use in reversed-phase capillary electrochromatography (RP-CEC) with hydro-organic mobile phases. These amphiphilic stationary phases yielded anodic electroosmotic flow (EOF) over a wide range of mobile phase pH. The magnitude of EOF remained constant up to pH 4.0 and then decreased at pH > 4.0 due to the ionization of silanol groups and the subsequent decrease in the net positive surface charge density of the amphiphilic monoliths. The cationic C18-monoliths exhibited reversed-phase chromatography (RPC) behavior toward non-polar solutes (e.g., alkyl benzenes), which parallels that observed with octadecyl-silica (ODS) monoliths. On the other hand, the amphiphilic stationary phases exhibited both non-polar and polar interactions toward slightly polar solutes such as anilines and PTH-amino acids. CEC retention factor k* and velocity factor k*e, which reflects the contribution of the electrophoretic mobility, were evaluated for charged solutes such as anilines and proteins.  相似文献   

5.
Abstract

The mechanism of retention in reversed-phase high performance liquid chromatography is affected by both solute-eluent interactions and the nature of the stationary phase. The hydrophobic expulsion of ionized solutes plays a major role in affecting solute behavior in the water-rich range of hydroorganic eluents. In the water-lean range of eluent composition, there is little hydrophobic expulsion, and specific interactions between the solute and surface can be observed. The nature of the surface affects the retention of a variety of ionized species, both large cations and anions. Octadecylsilane (ODS) bonded phases can exhibit two different binding sites: one exhibiting a weak interaction and the second a strong specific interaction with a solute. Styrenedivinylbenzene polymeric surfaces exhibit the potential for weak dispersion interactions, and in addition pi-bonding interactions with a solute. A variety of solutes have been injected in a water: methanol eluent system in order to assess solute-surface effects on reversed-phase supports.  相似文献   

6.
Summary The chromatographic properties of an alkylphosphonate-modified magnesia-zirconia composite stationary phase have been investigated by reversed-phase high-performance liquid chromatography with basic compounds as probes. The influence of organic modifier composition and mobile phase pH was studied. The new stationary phase, similar to a silica-based reversed-phase stationary phase, has hydrophobic properties, but greater pH stability. Use of the phase results in more symmetric peaks for basic compounds. A possible mechanism of retention of basic solutes on the new stationary phase is discussed. The chromatographic behavior of the basic solutes depends mainly on hydrophobic interactions between the solutes and the hydrophobic moiety of the stationary phase. Br?nsted acidic and basic sites on the surface of the new stationary phase play an important role in the retention of ionized solutes by ion-exchange interaction. Promising separations of some basic compounds have been achieved by use of methanolic TRIS buffer, pH 10.0, as the mobile phase.  相似文献   

7.
Summary The performance of two chromatographic (HPLC) methods recommended for hydrophobicity evaluation of structurally diverse (noncongeneric) solutes was compared. Azole derivative drugs possessing properties of weak organic bases were used as the test solutes. One of the methods, recommended by Minick and co-workers, consists on suppressing specific interactions with the stationary phase (ODS) by adding modifiers to the eluent of neutral pH. The other method, developed previously in our laboratory, yields retention data for nonionized bases due to using poly(butadiene)-coated alumina (PBCA) columns which can be operated under alkaline conditions. It has been demonstrated that in the case of basic solutes, hydrophobicity parameters obtained by the method employing PBCA columns are more reliable. The noncontrolled specific interactions of organic bases with the ODS phase at pH 7.0 remain effective in spite of special precautions undertaken.  相似文献   

8.
The retention and overloading properties for eight basic solutes and two quaternary ammonium compounds were studied over the pH range 2.7-10.0 using phosphate and carbonate buffers. At low pH, a hybrid inorganic-organic silica-ODS phase (XTerra RP-18, 15 cm x 0.46 cm) showed substantial loss in efficiency when sample masses exceeded about 0.5 microg; these results were similar to those obtained previously on pure silica ODS and wholly polymeric phases, suggesting a common overloading mechanism. At pH 7-8.5, substantial improvements in loading capacity were obtained on XTerra due apparently to the unexpectedly strong influence of small decreases in solute ionisation. Data from the quaternary compounds suggested that silanol ionisation on this phase was still small even at intermediate pH. For many bases, loading capacity continued to improve as the pH was raised to 10, in line with the decrease in the proportion of ionised solute. However, for the highest pK(a) solutes, peak shape worsened at high pH, possibly due to the negative influence of increasing column silanol ionisation.  相似文献   

9.
This work aims at characterizing interactions between a select set of probes and 22 hydrophilic and polar commercial stationary phases, to develop an understanding of the relationship between the chemical properties of those phases and their interplay with the eluent and solutes in hydrophilic interaction chromatography. "Hydrophilic interaction" is a somewhat inexact term, and an attempt was therefore made to characterize the interactions involved in HILIC as hydrophilic, hydrophobic, electrostatic, hydrogen bonding, dipole-dipole, π-π interaction, and shape-selectivity. Each specific interaction was quantified from the separation factors of a pair of similar substances of which one had properties promoting the interaction mode being probed while the other did not. The effects of particle size and pore size of the phases on retention and selectivity were also studied. The phases investigated covered a wide range of surface functional groups including zwitterionic (sulfobetaine and phosphocholine), neutral (amide and hydroxyl), cationic (amine), and anionic (sulfonic acid and silanol). Principal component analysis of the data showed that partitioning was a dominating mechanism for uncharged solutes in HILIC. However, correlations between functional groups and interactions were also observed, which confirms that the HILIC retention mechanism is partly contributed by adsorption mechanisms involving electrostatic interaction and multipoint hydrogen bonding. Phases with smaller pore diameters yielded longer retention of solutes, but did not significantly change the column selectivities. The particle diameter had no significant effect, neither on retention, nor on the selectivities. An increased water content in the eluent reduced the multipoint hydrogen bonding interactions, while an increased electrolyte concentration lowered the selectivities of the tested columns and made their interaction patterns more similar.  相似文献   

10.
The high-performance liquid chromatographic behavior of some basic drugs was studied on a n-octadecylphosphonic acid modified magnesia-zirconia (C18PZM) stationary phase. The effect of mobile phase variables such as methanol content, ionic strength, and pH on their chromatographic behavior was investigated. The retention mechanism of basic drugs on the stationary phase was elucidated. The results indicate that both hydrophobic and cation-exchange interactions contribute to solute retention under most chromatographic conditions. The inherent Br?nsted-acid sites and also the adsorbed Lewis base anionic buffer constituents on accessible ZM surface Lewis acid sites play a role in the retention of ionized solutes by cation-exchange interaction. However, especially at high mobile phase pH, the retention of basic drugs depends mainly on hydrophobic interactions between solutes and support. Separations of the basic drugs on the C18PZM phase by a predominantly reversed-phase retention mode were very promising. The mixed-mode retention feature on this phase, as a result of the adsorbed Lewis base anionic buffer constituents acting as sites for cation-exchange, could also be very useful, e.g. for enhancing the chromatographic selectivity of such analytes. The C18PZM seems to be an excellent alternative to silica-based reversed-phase stationary phase for the separation of strongly basic solutes.  相似文献   

11.
The chromatographic behaviors of some basic solutes were evaluated on stationary phases based on poly(methyloctylsiloxane) immobilized onto silica (PMOS-SiO(2)). The test solutes present both hydrophobic and hydrophilic properties. Evaluations of the pH effect used 80:20 v/v methanol/buffered mobile phase over the pH range of 5-11.5 with inorganic buffers such as borate, carbonate and phosphate and with organic buffers such as citrate, tricine and triethylamine. Evaluations in acidic mobile phases used 50:50 v/v and 30:70 v/v methanol/buffer (pH 2.5; 20 mmol/L) mobile phases. The buffer concentration effect used 65:35 v/v methanol/phosphate (pH 7; 20 and 100 mmol/L) mobile phases. The results are compared with those obtained with two chemically bonded stationary phases. The immobilized phases show greater contributions from an ion-exchange mechanism than do the commercial phases. The results indicate that the silanol activity of PMOS-SiO(2) stationary phases can be adequately evaluated by using appropriate basic probes and mobile phases having different pH, using different buffers.  相似文献   

12.
The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC – strong anion exchange, Thermo Fisher Scientific IonPac CS10 – strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed log P values of 0.38–0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18 and neutral μPS-DVB resin IonPac NS1-5u, yielding log P values of 0.57 and 0.52, respectively.  相似文献   

13.
The retention and selectivity of the chromatographic separation of basic (cationic) analytes on a polybutadiene-coated zirconia (PBD-ZrO2) stationary phase have been studied in greater detail than in previous studies. These separations are strongly influenced by the chemistry of the accessible surface of zirconia. In the presence of buffers which contain hard Lewis bases (e.g., phosphate, fluoride, carboxylic acids) zirconia's surface becomes negatively charged due to adsorption of the buffer anion at the hard Lewis acid sites. Consequently, under most conditions (e.g., neutral pH), cationic analytes undergo both hydrophobic and cation-exchange interactions. This mixed-mode retention process generally leads to greater retention factors for cations relative to those on silica-based reversed phases despite the lower surface areas of the zirconia phase, but, more importantly, adsorption of hard Lewis bases can be used to control the chromatographic selectivity for cationic analytes on these zirconia-based stationary phases. In contrast to our prior work, here we show that when mixed-mode retention takes place, both retention and selectivity are easily adjusted by changing the type of hard Lewis base buffer anion, the type of buffer counter-ion (e.g., sodium, potassium, ammonium), the pH, and the ionic strength of the eluent as well as the type and amount of organic modifier.  相似文献   

14.
王晓欢  陈磊 《色谱》2018,36(9):850-857
混合模式色谱(MMC)在复杂样品的分离分析方面具有独到的优势,相比于单一模式色谱,MMC受到多种作用控制,保留机理更为复杂。利用巯基-烯点击化学方法分别制备了单配体和双配体两种硫醚嵌入苯磺酸硅胶固定相,通过改变pH、离子强度和有机溶剂强度等流动相条件,以4种碱性药物为模型,对其保留机理进行了探讨。结果表明,两种固定相都具有反相和离子交换的混合保留机理。通过改变流动相中盐浓度、考察溶质保留因子与盐浓度倒数的关系,证明了反相、单纯离子交换和反相协同离子交换三种作用形式的保留模型更为合理。定量研究表明,在两个固定相上,由单纯离子交换和反相协同离子交换构成的总离子交换作用占主导,各作用占比与溶质、流动相组成、固定相配体的类型及其比例等密切相关,并且协同作用对溶质的保留和分离选择性影响很大。混合模式色谱保留机理的研究对于新型固定相设计和复杂体系的分离优化具有重要理论指导意义。  相似文献   

15.
Summary The chromatographic retention behaviour of two liquidcrystal bonded phases have been evaluated using polycyclic aromatic hydrocarbons (PAHs) as the probe samples in reversed-phase high performance liquid chromatography (RP-HPLC). The results clearly indicate that these phases have better planarity and shape recognition capabilities than commercially-avaialble polymeric octadecylsilica (ODS) phases whose strong planarity and shape selectivities were found earlier. It can also be concluded from the chromatographic observations that the shape recognition capability of these phases is dependent on both mobile phase composition and column temperature, but that the effect of mobile phase and temperature on the shape selectivity work independently. The retention behaviour can be explained by changes in the phase structure with changes of eluent composition and temperature.  相似文献   

16.
Retention factor, column efficiency and asymmetry factor were recorded for nine basic compounds on a number of RP-HPLC columns using phosphate and a variety of (MS-compatible) volatile mobile phase buffers of acid and neutral pH, in order to assess any effects of the buffer on performance. With formic or acetic acid, some phases gave partial or complete solute exclusion effects (reduced or negative k) compared with results using phosphate buffers at low pH. Despite its possible suppression of mass spectrometer sensitivity, trifluoroacetic acid was useful in enhancing retention times of relatively hydrophilic protonated bases, due to ion-pair effects. Peak shape was relatively poor on some pure silica-based ODS phases at pH 7 compared with results at acid pH. At low pH and at pH 7, ammonium and potassium phosphate gave very similar k, but the former may be preferable due to its volatile cation. Improved peak shapes, attributed to superior silanol masking effects, were obtained with ammonium phosphate at pH 7, but not at acid pH. Ammonium acetate gave acceptable peak shape at pH 7, but due to very limited buffer capacity, poor results were obtained for solutes having a pKa close to the mobile phase pH. Due to its instability, ammonium hydrogen carbonate is not a viable alternative buffer at pH 7.  相似文献   

17.
Summary The determination of acetate, lactate, chloride and phosphate in an intravenous solution is investigated using non-suppressed ion chromatography with indirect UV absorption detection. When phthalate eluents are used with low capacity anion-exchange columns, the above solute species cannot be resolved unless acetonitrile is added to the eluent. Optimum results are obtained with 0.3 mM phthalate (pH 6.0) containing 30% acetonitrile as eluent. The improved resolution with this eluent is attributed to the existence of a partial reversed-phase retention mechanism operating on the unfunctionalised portions of the styrene-divinylbenzene polymeric ion-exchange material.  相似文献   

18.
Variations of a thermal immobilization procedure using poly(methyltetradecilsiloxane) and silica produced fourteen stationary phases with carbon contents of 4-18%. The stationary phases were chromatographically evaluated with the Engelhardt, SRM 870 and Tanaka tests. Classifications using USP and Euerby procedures indicate that the new immobilized phases are different from most commercial phases although there was some similarity with phases that have high ion-exchange interactions. The retention mechanism involved in the separation of basic solutes on several of the new stationary phases was studied by varying pH, type of Lewis base and the ionic strength of the eluent. The separations are strongly influenced by the chemistry of the accessible free silanols. The stationary phases present good selectivity at intermediate pH where the basic analytes were protonated, suggesting use of intermediate pH for these separations. Stability tests show that the stationary phases have poor stability at very high pH, even at 23°C, but good stability in acidic mobile phases, even at 75°C, as expected for an immobilized polymer stationary phase.  相似文献   

19.
The cationic nature of basic drugs gives rise to broad asymmetrical chromatographic peaks with conventional C18 columns and hydro-organic mixtures, due to the ionic interaction of the positively charged solutes with the free silanol groups on the alkyl-bonded reversed-phase packing. Ionic liquids (ILs) have recently attracted some attention to reduce this undesirable silanol activity. ILs are dual modifiers (with a cationic and anionic character), which means that both cation and anion can be adsorbed on the stationary phase, giving rise to interesting interactions with the anionic free silanols and the cationic basic drugs. A comparative study of the performance of four imidazolium-based ILs as modifiers of the chromatographic behaviour of a group of β-blockers is shown. The ILs differed in the adsorption capability of the cation and anion on C18 columns. Mobile phases without additive and containing a cationic (triethylamine, TEA) or anionic (sodium dodecyl sulphate, SDS) additive were used as references for the interpretation of the behaviours. The changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on the changes in retention and peak shape of the β-blockers. The silanol suppressing potency of the additives, and the association constants between the solutes and modified stationary phase or additive in the mobile phase, were estimated. The study revealed that SDS and the ionic liquid 1-hexyl-3-methylimidazolium tetrafluoroborate are the best enhancers of chromatographic peak shape among those studied.  相似文献   

20.
We have modified a reversed-phase (RP8) column by passing through it an aqueous solution of phosphatidylcholine-based liposomes. The phospholipids from the liposomes adsorb onto the octyl chain of the stationary phase, thus altering the nature of the stationary phase and of the chromatographic interactions. The properties of the phospholipid-modified column were investigated using solutes belonging to several chemical classes. We found that the retention factors of negatively and positively charged solutes decreased as the amount of phospholipid in the column was increased. For the solutes studied here the extent of the decrease was smaller for the positive solutes. With neutral solutes, the retention factors of some (benzenediols) increased markedly while with others (ketones) the retention factors decreased. The selectivities between the various solutes on the phospholipid-modified column were different than on the original reversed-phase column. The retention behavior of the solutes can be explained in terms of (1) effective shielding of the hydrophobic part of the stationary phase by the polar head groups of the phospholipids and (2) hydrogen bond formation between the solutes and the carbonyl oxygens as well as the non-ester phosphate oxygens in the polar head groups of the phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号