首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new copper-complexed [2]catenanes have been prepared, both of which consist of two different interlocking rings. In both cases, one of the rings incorporates a disulfide bridge. The other ring contains either a single chelate (phen=1,10-phenanthroline, a bidentate ligand) or two different chelates (phen and terpy, 2,2',6',2"-terpyridine, a tridentate chelate). Deposition of these two complexes on a gold electrode surface was carried out by standard procedures, leading to reductive cleavage of the S-S bridge. The adsorbed species can be viewed as [2]catenanes for which the gold atoms of the electrode surface are an integral fragment of one of the two rings. They yield clear electrochemical responses, but no motion is observed for the catenane incorporating a phen unit and a terpy fragment in one of the two rings, regardless of the metal oxidation state. This is at odds with the behavior of the parent compound in solution, which undergoes ring-gliding motions upon electrochemical reduction or oxidation of the copper center. Near-field microscopy was used to study the deposited layers (STM and AFM). STM images suggest that the molecules do not tend to order at long range on the surface. Polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) led to promising results: the two catenanes deposited are likely to be oriented perpendicular to the gold surface. Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2111/2002/f3636_s.pdf or from the author. 1: Infrared spectra of [Cu.2]+ as a powder (black line, transmission IR spectroscopy) and as a SAM on gold (dotted line, PM-IRRAS). (Spectra offset and scaled for clarity; significant peaks marked with an asterisk.) 2: STM image (819x819 nm2) of a monolayer of [Cu.3]+ on Au(111) on mica.  相似文献   

2.
We report the structure, properties and a mechanism for the catecholase activity of a tetranuclear carbonato-bridged copper(II) cluster with the macrocyclic ligand [22]pr4pz (9,22-dipropyl-1,4,9,14,17,22,27,28,29, 30-decaazapentacyclo[22.2.1.1(4,7).1(11,14). 1(17,20)]triacontane-5,7(28),11(29),12,18, 20(30),24(27),25-octaene). In this complex, two copper ions within a macrocyclic unit are bridged by a carbonate anion, which further connects two macrocyclic units together. Magnetic susceptibility studies have shown the existence of a ferromagnetic interaction between the two copper ions within one macrocyclic ring, and a weak antiferromagnetic interaction between the two neighboring copper ions of two different macrocyclic units. The tetranuclear complex was found to be the major compound present in solution at high concentration levels, but its dissociation into two dinuclear units occurs upon dilution. The dinuclear complex catalyzes the oxidation of 3,5-di-tert-butylcatechol to the respective quinone in methanol by two different pathways, one proceeding via the formation of semiquinone species with the subsequent production of dihydrogen peroxide as a byproduct, and another proceeding via the two-electron reduction of the dicopper(II) center by the substrate, with two molecules of quinone and one molecule of water generated per one catalytic cycle. The occurrence of the first pathway was, however, found to cease shortly after the beginning of the catalytic reaction. The influence of hydrogen peroxide and di-tert-butyl-o-benzoquinone on the catalytic mechanism has been investigated. The crystal structures of the free ligand and the reduced dicopper(I) complex, as well as the electrochemical properties of both the Cu(II) and the Cu(I) complexes are also reported.  相似文献   

3.
New face-to-face heterodinuclear complexes containing copper(II) and nickel(II) in identical tetraazamacrocyclic environments have been synthesized and characterized using ESI mass-spectrometry, X-ray diffraction, spectroscopic methods, and elemental analysis. These new bismacrocyclic systems were compared with the respective mono- and bismacrocyclic and [2]catenane homonuclear complexes. Interactions between the metal centers were monitored by magnetic and electrochemical measurements. Magnetic data indicate that all copper compounds studied behave as weakly interacting magnets. In the case of copper [2]catenane, the extent of magnetic interactions decreased when a benzocrown moiety was introduced between the macrocyclic units. On the basis of electrochemical data, the interactions between the metal centers were found to be substantially larger for the nickel complexes than for the corresponding copper ones. Interlocking of a benzocrown ether to form [2]catenane led to a nonequivalence of the metal centers and to the increase of donor abilities of the catenane compared to the respective bismacrocyclic complex. This is reflected by the shift of the first formal potential to less positive values. Intermetallic interactions for the heteronuclear nickel/copper complexes were found intermediary compared to the homonuclear ones. They were strengthened by shortening the spacer between the two tetraazamacrocyclic subunits which is a convenient way of fine-tuning the interactions. The increase of intermetallic interactions led to the increased stability of the intermediate mixed-valence states indicated by the higher values of comproportionation constants.  相似文献   

4.
A [2]catenane has been constructed using an octahedral complex of the Ru(diimine)( 2+)(3) family as a scaffold. Two diimine chelates have been incorporated in a ring prior to the ruthenium(II) complexation reaction. The macrocyclic complex thus obtained has been subsequently threaded by a long linear fragment containing the third chelate. The rutheniuml(II)-complexed catenane, cyclized by ring-closing metathesis, is the first example of an interlocking ring system built around an octahedral tris-chelate complex.  相似文献   

5.
A [2]catenane in which the macrocyclic polyether, bisparaphenylene[34]crown-10, is interlocked with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is shown by dynamic (1)H NMR spectroscopy, using (i). neutral and (ii). anionic chiral shift reagents (CSRs), to exist at low temperatures (197 K) in acetone-d(6) solutions as 1:1 and 2:1 mixtures of diastereoisomeric complexes and salts, respectively, as a consequence of the helical chirality associated with the [2]catenane interacting with the CSRs.  相似文献   

6.
通过原位监测Cu-ZSM-5分子筛的振动红外光谱随温度及不同处理条件的变化情况,观察到[Cu-O-Cu]2+物种的形成过程,即两个Cu(OH)+在脱水过程中经二聚形成[Cu-O-Cu]2+.低交换度样品开始产生[Cu-O-Cu]2+物种所需脱水温度较高,通过观察不同处理条件对[Cu-O-Cu]2+的影响,说明Cu2+是通过脱出[Cu-O-Cu]2+中的超晶格氧而被还原为Cu+,较高温度时[Cu-O-Cu]2+中的超晶格氧能与气相中的氧达到某种平衡.超晶格氧的脱出性能是影响Cu-ZSM-5分子筛上铜价态变化的重要因素.  相似文献   

7.
[reaction: see text]. Olefin metathesis has been employed in the efficient syntheses of a [2]catenane with the templation being provided by the recognition between a secondary ammonium ion and a crown ether. In one approach, a crown ether precursor has been clipped around an NH2+ center situated in a macrocyclic ring, yielding the mechanically interlocked compound. In the other approach, the reversible nature of olefin metathesis allows for a magic ring synthesis to occur wherein two free macrocycles can be employed as the stationary materials, leading to the formation of the same [2]catenane.  相似文献   

8.
Cu-ZSM-5分子筛上[Cu-O-Cu]2+物种的原位红外光谱研究   总被引:1,自引:0,他引:1  
通过原位监测Cu-ZSM-5分子筛的振动动红外光谱随温度及不同处理条件的变化情况,观察到[Cu-O-Cu]^2+物种的形成过程,即两个Cu(OH)^+在脱水过程中经二聚形成[Cu-O-Cu]^2+,低交换度样品开始产生[Cu-O-Cu]^2+物种所需脱水温度较高,通过观察不同处理条件对[Cu-O-Cu]^2+的影响,说明Cu^2+是通过脱出[Cu-O-Cu]^2+中的超各氧而被还原为Cu^+,较高  相似文献   

9.
一种新的Salen型双肟配体H2L(H2L=4,4′-二溴-6,6′-二氯-2,2′-[乙二氧双(氮次甲基)]二酚)分别与一水合乙酸铜或四水合乙酸钴反应,合成了2种配合物即[Cu(L)] (1)和[Co(L)(H2O)2]n (2)。X-射线单晶衍射分析结果表明,配合物1是单核结构,由1个Cu2+离子和1个四齿配位的L2-单元组成。中心Cu原子的配位数为4,配合物的几何构型为扭曲的四面体。配合物2含有1个Co2+离子、1个配体L2-单元(提供N2O2给予体)、2个配位的水分子,其中心Co原子具有六配位的稍微扭曲的八面体几何构型。该配合物通过分子间氢键和π-π堆积作用形成了线性延伸的金属-水链状超分子结构。  相似文献   

10.
The copper(II) coordination chemistry of westiellamide (H(3)L(wa)), as well as of three synthetic analogues with an [18]azacrown-6 macrocyclic structure but with three imidazole (H(3)L(1)), oxazole (H(3)L(2)), and thiazole (H(3)L(3)) rings instead of oxazoline, is reported. As in the larger patellamide rings, the N(heterocycle)-N(peptide)-N(heterocycle) binding site is highly preorganized for copper(II) coordination. In contrast to earlier reports, the macrocyclic peptides have been found to form stable mono- and dinuclear copper(II) complexes. The coordination of copper(II) has been monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric and polarimetric titrations, and EPR and IR spectroscopies, and the structural assignments have been supported by time-dependent studies (UV/Vis/NIR, ESI-MS, and EPR) of the complexation reaction of copper(II) with H(3)L(1). Density functional theory (DFT) calculations have been used to model the structures of the copper(II) complexes on the basis of their spectroscopic data. The copper(II) ion has a distorted square-pyramidal geometry with one or two coordinated solvent molecules (CH(3)OH) in the mononuclear copper(II) cyclic peptide complexes, but the coordination sphere in [Cu(H(2)L(wa))(OHCH(3))](+) differs from those in the synthetic analogues, [Cu(H(2)L)(OHCH(3))(2)](+) (L = L(1), L(2), L(3)). Dinuclear copper(II) complexes ([Cu(II) (2)(HL)(mu-X)](+); X = OCH(3), OH; L = L(1), L(2), L(3), L(wa)) are observed in the mass spectra. While a dipole-dipole coupled EPR spectrum is observed for the dinuclear copper(II) complex of H(3)L(3), the corresponding complexes with H(3)L (L = L(1), L(2), L(wa)) are EPR-silent. This may be explained in terms of strong antiferromagnetic coupling (H(3)L(1)) and/or a low concentration of the dicopper(II) complexes (H(3)L(wa), H(3)L(2)), in agreement with the mass spectrometric observations.  相似文献   

11.
A nonsymmetrical [2]-catenane has been synthesized, with a 5-coordinated metal center (Zn(2+)) as template. One of the two rings contains a terdentate ligand (2,2',6',2' '-terpyridine) and the other one incorporates a bidentate chelate (1,10-phenanthroline). The first ring was prepared separately and, subsequently, Zn(2+) was used as the gathering and threading element to pass the stringlike component through the ring. This open-chain species bears two terminal olefins, which were reacted with Grubbs first-generation catalyst (ring-closing metathesis) to afford the desired catenane. Hydrogenation of the double bond and removal of the zinc(II) template afforded the final free [2]-catenane in 40% yield from the terdentate ligand-containing cycle and the diolefinic compound. Complexation studies on this new pentacoordinating catenane were carried out with Fe(II) or Cu(II). The most interesting observation is that the 5-coordinated complexes obtained are strongly stabilized. Their electrochemical reduction occurs at negative potentials.  相似文献   

12.
Condensing a dihydrazide and each of a series of cationic bisaldehyde compounds bearing polymethylene chains in weakly acidic water produces either a macrocycle in a [1 + 1] manner or its dimer namely a [2]catenane, or their mixture. The product distribution is determined by the length of the bisaldehydes. Addition of cucurbit[8]uril (CB[8]) drives the catenane/macrocycle equilibria to the side of macrocycles, by forming ring-in-ring complexes with the latter. When the polymethylene unit of the bisaldehyde is replaced with a more rigid p-xylene linker, its self-assembly with the dihydrazide leads to quantitative formation of a [2]catenane. Upon addition of CB[8], the [2]catenane is transformed into an ultra-large macrocycle condensed in a [2 + 2] manner, which is encircled by two CB[8] rings. The framework of this macrocycle contains one hundred and two atoms, whose synthesis would be a formidable task without the external template CB[8]. Removal of CB[8] with a competitive guest leads to recovery of the [2]catenane.

Condensing a bisaldehyde and a bisacylhydrazide in water in the presence of cucurbit[8]uril, produced an ultra-large ring whose framework contains more than one hundred atoms.  相似文献   

13.
The reaction between ligand 1, which consists of two terminal pyridines attached to a central 1,10-phenanthroline (phen), and the complex Ru(phen)2(CH3CN)2(PF6)2 has been studied. A new ruthenium containing metallamacrocycle has been obtained and fully characterized. Despite the relatively poor yield for the cyclization process involving the ruthenium center (20%), this strategy led to the synthesis of two different kinds of [2]-catenane. The first example reported in this article is a bimetallic Cu(I)/Ru(II) catenane 5(3+) consisting of a purely organic ring interlocked with the ruthenium(II)-incorporating metallacycle. Complex 5(3+) was selectively demetalated at the Cu(I) center to lead to the free Ru(II)-containing catenane. A trimetallic Ru(II)/Cu(I)/Ru(II) catenane 8(5+) was also synthesized showing that this approach is reliable and promising for the elaboration of photoactive multicomponent systems.  相似文献   

14.
The synthesis of a polypseudorotaxane, polyrotaxane, and polycatenane containing the electron-deficient cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+) subunit in the side chain is described. These interlocked supramolecular polymers have been prepared from an azide-functionalized polystyrene derivative and an acetylene-functionalized [2]rotaxane, [2]catenane and their parent tetracationic cyclophane via Cu(I)-catalyzed 1,3 dipolar cycloadditions (‘click chemistry’). The synthesis and characterization of the polymers and intermediates has been described using IR, 1H NMR, UV spectroscopies, and voltammetry. We have shown that the CBPQT4+ unit of the side chain polystyrene derivative has the ability to reversibly undergo complexation with a complementary dialkoxynaphthalene derivative.  相似文献   

15.
The synthesis, characterization and copper(II) coordination chemistry of three new cyclic peptide ligands, PatJ(1) (cyclo-(Ile-Thr-(Gly)Thz-Ile-Thr-(Gly)Thz)), PatJ(2) (cyclo-(Ile-Thr-(Gly)Thz-(D)-Ile-Thr-(Gly)Thz)), and PatL (cyclo-(Ile-Ser-(Gly)Thz-Ile-Ser-(Gly)Thz)) are reported. All of these cyclic peptides and PatN (cyclo-(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz)) are derivatives of patellamide A and have a [24]azacrown-8 macrocyclic structure. All four synthetic cyclic peptides have two thiazole rings but, in contrast to patellamide A, no oxazoline rings. The molecular structure of PatJ(1), determined by X-ray crystallography, has a saddle conformation with two close-to-coparallel thiazole rings, very similar to the geometry of patellamide D. The two coordination sites of PatJ(1) with thiazole-N and amide-N donors are each well preorganized for transition metal ion binding. The coordination of copper(II) was monitored by UV/Vis spectroscopy, and this reveals various (meta)stable mono- and dinuclear copper(II) complexes whose stoichiometry was confirmed by mass spectra. Two types of dinuclear copper(II) complexes, [Cu(2)(H(4)L)(OH(2))(n)](2+) (n=6, 8) and [Cu(2)(H(2)L)(OH(2))(n)] (n=4, 6; L=PatN, PatL, PatJ(1), PatJ(2)) have been identified and analyzed structurally by EPR spectroscopy and a combination of spectra simulations and molecular mechanics calculations (MM-EPR). The four structures are similar to each other and have a saddle conformation, that is, derived from the crystal structure of PatJ(1) by a twist of the two thiozole rings. The small but significant structural differences are characterized by the EPR simulations.  相似文献   

16.
Reaction of 1-propylamino-4-acetato-1,4,7-triazacyclononane (L1), 1-benzyl-4-acetato-1,4,7-triazacyclononane (L2) and 1-benzyl-4-propylamino-1,4,7-triazacyclononane (L3) with a copper(II) salt gave Na2[CuL1](ClO4)3(1a), [CuL2]Cl (2) and [Cu2L32](ClO4)4.5H2O (3), respectively. [CuL4]ClO4 (4) was formed by reacting 1-formyl-4-ethylacetato-1,4,7-triazacyclononane with cupric chloride in aqueous solution. The X-ray crystal structures of the complexes reveal that the ligands generate distorted square pyramidal or square planar coordination environments about the Cu(II) centre, but in three complexes (1b, 3 and 4) weak interactions to an oxygen atom from a perchlorate anion and, in the case of 4, also to an amide nitrogen leading to tetragonally elongated octahedral Cu(II) geometries. In 4, the formyl group is found to reduce the coordinating ability of the macrocyclic nitrogen to which it is attached, as evidenced by the weak CuN interaction. The formation of five-membered chelate rings on coordination of the ligands further contributes to the distortion from the ideal geometries. The crystal lattices contain a number of novel supramolecular features. 1a contains a negatively charged sodium perchlorate chain of composition [Na2(ClO4)3]x(x-), with a complex series of Na-O-Na bridges flanked by [CuL1]+ units, while 3 contains highly complex hydrogen bonded sheets approximately 20 A thick that stack through van der Waals interactions. One-dimensional chains comprised of copper complexes are found in 2 and 4, and are held together by hydrogen bonds in 2 and acetate bridges between the copper cations in 4. The solution EPR spectra indicate that the copper(II) centres exist in isolated distorted square pyramidal (possibly square planar for 4) environments, while in the solid state there is evidence for the existence of weak exchange and dipole-dipole coupling for some complexes.  相似文献   

17.
The redox behaviour of copper(II) complexes with the open chain ligand, benzilbisthiosemicarbazone, and the macrocyclic one [3,4,10,11-tetraphenyl-1,2,5,8,9,12,13-octaazacyclotetradeca-7,14- dithione- 2,4,9,11-tetraene] has been explored by cyclic voltammetry. The half-wave potential values for the copper(II)/copper(I) redox couple and the spectral data obtained on dimethylsulfoxide (DMSO) solution agree with the superoxide dismutase (SOD)-mimetic activity of the complexes. The macrocyclic complexes show more positive reduction potential and more activity than the open chain derivatives. From our results it follows that the structure and conformation of ligand has influence on the redox potential of central atom in coordination compound. The changes in the coordination sphere are connected with the change of biological function of compounds represented by SOD-mimic activity. In addition, the L1H6 derivatives show quasireversible waves associated to Cu(II)/Cu(III) process.  相似文献   

18.
以5-溴-2-甲氧基-1, 3-苯二甲醛与二乙烯三胺通过[2+2]缩合,合成了一个新的六氮杂二十四元大环配体, 并在[Cu(CH3CN)4]ClO4存在下生成Cu(I)大环配合物, 然后在空气(或氧气)中氧化, 得到了新的大环双核Cu(II)配合物, 用多种方法对其进行了表征, 用1H NMR谱等方法鉴定了氧化产物。实验结果表明: 在Cu(I)配合物氧化过程中,能使配体环上的一个甲氧基发生断裂, 形成苯氧桥和水桥联的Cu(II)配合物。在木质素酶等单加氧酶的氧化过程中也伴随着氧化去甲基作用。本文首次用大环配合物对这一过程进行了模拟, 并测定了氧化反应中的吸氧量和吸氧速率常数。  相似文献   

19.
Manav Gupta 《Tetrahedron letters》2008,49(18):2946-2950
A [3]catenane with peripheral olefinic macrocycles was conveniently synthesized via a double ring-closing olefin metathesis. Highlights of this work include the synthesis of a 65-membered macrocycle featuring two phenanthroline ligands, a Cu(I)-templated synthesis of a [3]pseudorotaxane, and the key double ring-closing olefin metathesis to afford the desired [3]catenane in 71% yield.  相似文献   

20.
Copper(II) macrocyclic complexes [Cu(L)Cl2]·2H2O (1,2) have been synthesized from the copper(II)-directed condensation of 4-methyl-2,6-diformylphenol (1) or 4-methyl-2,6-dibenzoylphenol (2) with diamines [1,2-diaminopropane (a), 1,3-diaminopropane (b) and o-phenylenediamine (c)] in EtOH in high yields. These complexes are monomeric, non-electrolytes and paramagnetic, indicating a distorted octahedral geometry around copper, which is supported by i.r., electronic, e.s.r. and magnetic susceptibility measurements. Electrochemical studies of (1) and (2) using c.v. indicate an irreversible cathodic peak (ca. –0.65 to –0.76 V) corresponding to reduction of copper(II) to copper(I) and the diffusion-controlled nature of the electrode process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号