首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
MnO and Mn2O3 nanoparticles were prepared in air and argon atmosphere by thermal decomposition of nanocrystalline manganese carbonate synthesized by reaction of manganese(II) nitrate with glycerol. Samples were characterized using transmission electron microscopy, simultaneous thermal analysis and X-ray diffraction analysis. Average sizes of prepared nanoparticles were calculated from XRD patterns using Scherrer equation. Also, the conditions for decomposition of manganese carbonate were optimized to obtain optimal nanoparticle sizes. Due to suitable sizes of prepared nanoparticles and the initial material, this method can be used in a wide range of industrial applications.  相似文献   

2.
A facile approach was used for synthesize size-controlled monodisperse magnetite (Fe3O4) nanoparticles. In this method, precursors were obtained only using iron (III) chloride though a simple non-alkoxide sol–gel method. Meanwhile, this operation is without the need for inert gas atmosphere and refluxing conditions and without the strict control of high temperature and pressure. The phase structures, morphologies, particle sizes and magnetic properties of Fe3O4 nanoparticles were characterized by X-ray diffraction, transmission electron diffraction, fourier-transform infrared spectroscopy, near-edge X-ray absorption fine structure and vibrating sample magnetometer. Although this approach is a small modification to other methods, the synthetic pathway includes the advantages of several other methods. In addition, this method may offer a feasible strategy for those reaction which need more moderate reaction conditions.  相似文献   

3.
This article reports the synthesis of the poly(sodium 4-styrenesulfonate)-grafted Fe3O4/SiO2 particles via two steps. The first step involved magnetite nanoparticles (Fe3O4) homogeneously incorporated into silica spheres using the modified Stöber method. Second, the modified silica-coated Fe3O4 nanoparticles were covered with the outer shell of anionic polyelectrolyte by surface-initiated atom transfer radical polymerization. The resulted composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive microscopy (EDS), Fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). The XRD results indicated that the surface modified Fe3O4 nanoparticles did not lead to phase change compared with the pure Fe3O4. TEM studies revealed nanoparticles remained monodisperse. The detection of sulfur and sodium signals was a convincing evidence that sodium 4-styrenesulfonate was grafted onto the surface of the magnetic silica in XPS analysis. Finally, super-paramagnetic properties of the composite particles, and the ease of modifying the surfaces may make the composites of important use in mild separation, enzyme immobilization, etc.  相似文献   

4.
Tricobalt tetraoxide nanoparticles have been successfully synthesized following a ‘bottom-up’ approach by surfactant-free thermal decomposition of cobalt(II)-tartrate complex obtained by a modified sol–gel route. The synthesized complex was characterized by Fourier transform infrared (FT-IR) spectroscopy, elemental and thermogravimetric-differential thermal analysis (TG–DTA). The nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman studies. The powder XRD pattern furnished evidence for a face-centered cubic structure of Co3O4. With the rise in calcination temperature from 400 through 500 to 600 °C, the average crystallite sizes of Co3O4 were found to increase from 28 through 36 to 46 nm. The TEM image revealed a faceted morphology of the as-synthesized Co3O4 nanoparticles. The high-resolution TEM image indicated the interplanar separation to be 0.28 nm which corresponds to the (220) plane in face-centered cubic Co3O4. The electron diffraction (ED) pattern showed single-crystalline nature of the synthesized nanoparticles. Raman spectrum showed four characteristic peaks of Co3O4 which further confirmed the phasic purity of the material.  相似文献   

5.
MgFe2O4 (Mg-ferrite) nanoparticles encapsulated in amorphous SiO2 were prepared by the wet chemical method. The particle sizes were estimated, based on the X-ray diffraction peaks, to be between 3 and 8 nm, depending on the annealing temperature. The particle size increased as the annealing temperature increased. From the magnetization measurements, the blocking temperature, T b, was found to be between 30 and 60 K. The magnetization values varied with the annealing or quenching conditions. To clarify the process of crystal growth, thermogravimetric and differential thermal analysis (TG-DTA) measurements were performed and the results were compared with the X-ray diffraction patterns.  相似文献   

6.
NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol–gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600°C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5–42.5 nm while the thickness of SiO2 shell attained 1.5–3.5 nm approximately.  相似文献   

7.
A novel environmental friendly, room temperature route using an ionic liquid 1-n-butyl-3-methylimidazolium hydroxide ([BMIM]OH) for the synthesis of Mn3O4 nanoparticles is presented. The product was characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, and transmission electron microscopy. Phase purity was confirmed by XRD, and X-ray line profile fitting determined a crystallite size of 42 ± 11 nm. TEM analysis revealed various morphologies. EPR measurements have indicated the existence of long-range interactions, due to the wide range of particle sizes and morphologies observed.   相似文献   

8.
Modified calcium carbonate (CaCO3) nanoparticles with cubic- and spindle-like configuration were synthesized in situ by the typical bobbling (gas-liquid-solid) method. The modifiers, such as sodium stearate, octadecyl dihydrogen phosphate (ODP) and oleic acid (OA), were used to obtain hydrophobic nanoparticles. The different modification effects of the modifiers were investigated by measuring the active ratio, whiteness and the contact angle. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetry analysis (TGA analysis) were employed to characterize the obtained products. A preliminary reaction mechanism was discussed. According to the results, the active ratio of CaCO3 modified by ODP was ca. 99.9% and the value of whiteness was 97.3% when the dosage of modifiers reached 2%. The contact angle was 122.25° for the CaCO3 modified in the presence of sodium stearate, ODP and OA. When modified CaCO3 was filled into PVC, the mechanical properties of products were improved greatly such as rupture intensity, pull intensity and fuse temperature. The compatibility and affinity between the modified CaCO3 nanoparticles and the organic matrixes were greatly improved. Supported by the National Natural Science Foundation of China (Grant No. 50372025)  相似文献   

9.
Two important iron oxides:Fe3O4 and Fe2O3,as well as Fe3O4 and Fe2O3 nanoparticles mingling with Ag were successfully synthesized via a hydrothermal procedure.The samples were confirmed and characterized by X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The morphology of the samples was observed by transmission electron microscopy(TEM).The results indicated Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 samples all were nanoparticles with smaller sizes.The samples were modified on a glassy carbon electrode and their elctrocatalytic properties for p-nitrophenol in a basic solution were investigated.The results revealed all the samples showed enhanced catalytic performances by comparison with a bare glassy carbon electrode.Furthermore,p-nitrophenol could be reduced at a lower peak potential or a higher peak current on a glassy carbon electrode modified with Ag/Fe3O4 or Ag/Fe2O3 composite nanoparticles.  相似文献   

10.
Mn3O4 hexagonal nanoplates and nanoparticles were synthesized via a solvent-assisted hydrothermal oxidation process at low temperature and a solvothermal oxidation method, respectively. The synthesized product was characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron diffraction (ED), Fourier transform infrared (FT-IR) spectroscopy. Their capability of catalytic oxidation of formaldehyde to formic acid at room temperature and atmospheric pressure and electrochemical properties by cyclic voltammogram (CV) were compared. The results showed that Mn3O4 hexagonal nanoplate is a better catalyst, and the hexagonal nanoplates and nanoparticles modified electrodes blended with carbon black have a higher specific capacitance.  相似文献   

11.
采用浸渍沉淀法制备出WO3-碳纳米管(WO3-CNTs)纳米复合材料, 微波辅助乙二醇法在其表面负载活性成分Pt, 得到纳米Pt/WO3-CNTs 催化剂. 采用X射线衍射(XRD), 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等测试手段对催化剂的结构和形貌进行表征, 结果表明Pt 纳米粒子为面心立方晶体结构, 粒径大小在3-5 nm之间, 均匀地分布在WO3-CNTs 纳米复合材料表面, 同时发现催化剂中的Pt 主要以金属态的形式存在. 采用循环伏安和计时电流法研究了在酸性溶液中Pt/WO3-CNTs 催化剂对甲醇的电催化氧化性能, 结果表明Pt/WO3-CNTs 催化剂比用硝酸处理的碳纳米管载铂催化剂(Pt/CNTs)对甲醇呈现出更高的电催化氧化活性和抗CO中毒性能.  相似文献   

12.
Fe3O4 nanoparticles were prepared and decorated on the surface of nanobentonite (NB), and subsequently modified by the organic and inorganic linkers and then sulfonic acid immobilization on the nanoparticles. The NB-Fe3O4@SiO2@CPTMO@DEA-SO3H catalyst was characterized via Fourier transform-infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating-sample magnetometer, X-ray diffraction patterns, Brunauer–Emmett–Teller and thermal gravimetric analysis. The new catalyst benefits from a simple preparation method, and environmentally friendly and high magnetic properties of the nanocatalyst, Accordingly, we used it for the synthesis of dihydropyrano[2,3c]pyrazole derivatives in water and ethanol mixture as a green solvent under reflux conditions. Use of mild conditions, easy catalyst separation, cost-effectiveness, short reaction time, reusability of the catalyst, excellent yield and easy work-up are the main advantages of the present method.  相似文献   

13.
N-(amino-ethyl)-amino-propyl trimethoxy silane (AEAPTMS) is used to modify Fe3O4 with a one-pot coprecipitation method. Powder X-ray diffraction measurements show the spinel structure of magnetite nanoparticles. A high positive charge of +33.96 mV was obtained on the surfaces of modified magnetic nanoparticles, with the diameter ranging from 6.5 to 22.5 nm. The modified Fe3O4 was first applied to the treatment of wastewater from tertiary oil recovery. The obtained results indicated that the oil removal rate increased with the dosage of modified Fe3O4 and slightly increased with the separation time. The mechanism of modified Fe3O4 toward wastewater from tertiary oil recovery was attributed to the electrostatic interaction between negatively charged microemulsion oil in wastewater and the positively charged surfaces of magnetic nanoparticles.  相似文献   

14.
The Raman spectra of Li0.5Co0.1Fe2.4O4 nanoparticles have been recorded in the spectral range, 400-800 cm−1 at four different particle sizes. X-ray and TEM measurements were done to determine crystal structure and size of the nanoparticles. X-ray diffraction (XRD) shows that the Li0.5Co0.1Fe2.4O4 nanoparticles have an order phase spinel structure without any impurity. The size of the nanocrystal was calculated through XRD patterns and TEM micrographs and it turns out to be 34-42 nm. The Raman spectra of each size nanoparticles show five Raman bands. The most intense Raman band shows a noticeable asymmetrical feature towards lower wavenumber side. A line shape analysis was performed to get the exact spectral parameters of the Raman bands. The intensity of asymmetrical feature keeps on increasing with decreasing the particle size from 42 nm to 34 nm and finally evolved as a new Raman band. The appearance of new band and its intensity response relative to the intensity of the main Raman band as a function of particle size has been explained in terms of electron-phonon coupling. It was observed that the strength of electron-phonon coupling goes on increasing with reducing the particle size. The red shifting of the Raman bands upon reducing the crystalline size is explained in terms of the lattice expansion, which is well supported by the XRD data.  相似文献   

15.
Synthesis of silicon nanoparticles of various sizes from 3 to 9 nm in diameter was accomplished via a low temperature solution route. These nanoparticles are prepared via reduction of SiCl4 with Na naphthalide in dimethoxyethane and capped with octasiloxane. The resulting nanoparticles were characterized by transmission electron microscopy (TEM), high resolution (HR) TEM, selected area electron diffraction (SAED), energy dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction, UV–vis, photoluminescence, and their quantum yields were determined. TEM micrographs show that the nanoparticles are well dispersed and SAED and lattice fringes are consistent with diamond structured silicon. X-ray powder diffraction provides no diffraction peaks. UV–vis and photoluminescence show characteristic shifts corresponding to size, consistent with quantum confinement. The smallest sized nanoparticles show the largest quantum yield, consistent with an indirect bandgap nanoparticles.  相似文献   

16.
UV- active cellulose fibers were obtained by dry-wet method spinning an 8?% by weight α-cellulose solution in N-methylomorpholine-N-oxide (NMMO) modified by europium-doped gadolinium oxyfluoride Gd4O3F6:Eu3+ containing 5?mol (%) of the dopant. Photoluminescent nanoparticles were introduced in the in powder form into a polymer matrix during the process of cellulose dissolution in NMMO. The dependencies of emission intensity on excitation energy and the concentration of Gd4O3F6:Eu3+ nanoparticles in the final cellulosic products were examined by photoluminescence spectroscopy (excitation and emission). The fiber structure was studied by X-ray powder diffraction analysis. The size and dispersity of the nanoparticles in the polymer matrix were evaluated using scanning electron microscopy and X-ray microanalysis. The influence of different concentration particles (in the range from 0.5 to 5?% by weight) on the mechanical properties of the fibers, such as tenacity and elongation at break, were determined.  相似文献   

17.
激光CVD法合成SiC-Si3N4复合纳米颗粒   总被引:2,自引:0,他引:2       下载免费PDF全文
用激光化学蒸汽沉积(CVD)法合成了SiC-Si3N4复合纳米颗粒,并用X射线衍射(XRD),透射电子显微镜(TEM)和电子自旋共振磁力计(ESR)分析了试料的晶体结构,颗粒形状以及悬空键的状况。合成的试料粒度分布集中,平均粒径为32nm,颗粒由直径为5~30nm的单晶或多晶组成。试料纯度高,颗粒为近似球形,十分适合于粉体的加工和烧结。另外试料有很高的热稳定性,在加热的过程中的变化首先是悬空键减少,然后是相分解和颗粒长大。  相似文献   

18.
We have presented a method for the fabrication of poly(3-thiophenyl acetic acid) (P3TAA)-BaFe12O19 nanocomposites by the in situ polymerization of P3TAA in the presence of synthesized BaFe12O19 nanoparticles. The nanoparticles and the nanocomposite were analyzed by XRD, FTIR, TGA, TEM, VSM and conductivity techniques for structural and physicochemical characteristics. Crystallographic analysis revealed the phase as hexaferrite and X-ray line profile fitting yielded a crystallite size of 32 nm. The particles, observed by TEM, exhibit irregular shapes and sizes between 100 and 500 nm, revealing polycrystalline character when compared with the crystallite size from XRD. FTIR and TGA analysis results show that P3TAA is conjugated to the particle surface via a carboxylate group and that the composite has a polymer content of ∼10%. Magnetic hysteresis curves do not saturate at high fields, which is a characteristic feature of fine particle systems with grain sizes smaller than 1 μm. Conductivity measurements showed a semiconductor character of the nanocomposite.  相似文献   

19.
The growth of Cu2O nanoparticles on silk fibers was achieved under ultrasound irradiation. The effect of temperature, reaction time, ultrasound irradiation and solvent in growth of the Cu2O nanoparticles upon fiber has been studied. These systems depicted a decrease in the size accompanying a decrease in the reaction time. Particle sizes and morphology of nanoparticle depend on power of ultrasound irradiation. Results show that in presence of ultrasound radiation, particle sizes are in a very low range. The susceptibility of the microorganisms to Cu2O upon fiber was determined by minimum inhibitory concentration (MIC) using micro dilution method and disk diffusion method. Results suggest that the Cu2O nanoparticles on silk fibers have antibacterial activity. The Cu2O nanoparticles upon fibers were characterized with X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). XRPD analyses indicated that the prepared Cu2O nanoparticles on silk fibers were crystalline.  相似文献   

20.
KRE(WO4)2 (RE = Gd and Yb) nanocrystalline powder was obtained by the modified sol-gel Pechini method. The precursor powder was calcined between 923 and 1023 K for a maximum of 6 h at air atmosphere. DTA-TG of the precursor powder shows that the temperature for total calcination is around 800–850 K. Molar ratio between the complexing agent and the metal ions in the first step of the method and molar ratio between the complexing agent and the ethylene glycol in the second step of the method were studied to optimize the preparation process. X-ray diffraction and IR spectroscopy were used to study the transformation from precursor powder into a crystalline monoclinic phase. Raman spectroscopy was used to study the vibrational structure of the nanoparticles. The Scherrer formula was used to confirm the grain sizes visualized by SEM and TEM techniques. Small nanoparticles in the range of 20–50 nm of monoclinic KREW have been successfully obtained by this methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号