首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stir bar sorptive extraction (SBSE) is a microextraction technique, introduced to overcome the problem of limited extraction capacity and fragile fiber coatings inherent in the solid phase microextraction technique. The major limitations of the SBSE technique are that only polydimethylsiloxane has been commercially available, this reduces its use to non-polar analytes, and its tedious reconstitution step which can lead to loss of analytes and introduction of impurities. The current trend has been aimed at the use of other materials, some of which are commercially available, such as restricted access materials, carbon adsorbents, molecularly imprinted polymers, ionic liquids, microporous monoliths, sol–gel prepared coatings and dual phase material. This has greatly helped in widening the applications of SBSE for pesticide analysis in fruits and vegetables and other matrices. The introduction of a thermal desorption unit which eliminates the reconstitution step of the stir bar in organic solvents before instrumental analysis has helped to automate the extraction method online with gas chromatography. This paper reviews the use of SBSE in pesticide residues analysis in fruits and vegetables, with a view on sample preparation steps, method optimization and validation of analytical figures of merit.  相似文献   

2.
A multi-residue method to determine 85 pesticides, including organochlorine pesticides, carbamates, organophosphorus pesticides, and pyrethroids, in vegetables, fruit, and green tea, has been developed. The method is based on stir bar sorptive extraction (SBSE) coupled to thermal desorption (TD) and retention time locked (RTL) GC-MS operating in the scan mode. Samples are extracted with methanol and diluted with water prior to SBSE. Dilution of the methanol extract before SBSE was optimized to obtain high sensitivity and to minimize adsorption onto the glass wall of the extraction vessel as well as to minimize sample matrix effects (particularly for the pesticides with high log K(o,w) values). The optimized method consists of a dual SBSE extraction performed simultaneously on respectively a twofold and a fivefold diluted methanol extract. After extraction, the two stir bars are placed in a single glass thermal desorption liner and are simultaneously desorbed. The method showed good linearity (r2 > 0.9900) and high sensitivity (limit of detection: < 5 microg kg(-1)) for most of the target pesticides. The method was applied to the determination of pesticides at low microg kg(-1) in tomato, cucumber, green soybeans, spinach, grapes, and green tea.  相似文献   

3.
A method is described for fast dual-column separation of pesticides by use of dual low thermal mass gas chromatography–mass spectrometry (dual LTM-GC–MS) with different temperature programming. The method can provide two total ion chromatograms with different separation on DB-5 and DB-17 in a single run, which allows improved identification capability, even with short analysis time (<17 min). Also simultaneous detection with MS and elemental selective detector, e.g. pulsed flame photometric detection (PFPD) was evaluated for fast dual-column separation of 82 pesticide mixtures including 27 phosphorus pesticides. Dual LTM-GC–MS/PFPD was applied to analysis of pesticides in a brewed green tea sample with dual stir bar sorptive extraction method (dual SBSE).  相似文献   

4.
A novel extraction procedure for stir bar sorptive extraction (SBSE) termed sequential SBSE was developed. Compared to conventional SBSE, sequential SBSE provides more uniform enrichment over the entire polarity/volatility range for organic pollutants at ultra-trace levels in water. Sequential SBSE consists of a SBSE performed sequentially on a 5-mL sample first without modifier using one stir bar, then on the same sample after addition of 30% NaCl using a second stir bar. The first extraction with unmodified sample is mainly targeting solutes with high Kow (logKow>4.0), the second extraction with modified sample solution (containing 30% NaCl) is targeting solutes with low and medium Kow (logKow<4.0). After extraction the two stir bars are placed in a single glass desorption liner and are simultaneously desorbed. The desorbed compounds were analyzed by thermal desorption and gas chromatography-mass spectrometry (TD-GC-MS). Recovery of model compounds consisting of 80 pesticides (organochlorine, carbamate, organophosphorus, pyrethroid, and others) for sequential SBSE was evaluated as a function of logKow (1.70-8.35). The recovery using sequential SBSE was compared with those of conventional SBSE with or without salt addition (30% NaCl). The sequential approach provided very good recovery in the range of 82-113% for most of the solutes, and recovery less than 80% for only five solutes with low Kow (logKow<2.5), while conventional approaches (with or without salt addition) showed less than 80% recovery for 23 and 41 solutes, respectively. The method showed good linearity (r2>0.9900) and high sensitivity (limit of detection: <10ngL(-1)) for most of the model compounds even with the scan mode in the MS. The method was successfully applied to screening of pesticides at ngL(-1) level in river water samples.  相似文献   

5.
吴永慧  邓云  吕亚宁  淦五二 《色谱》2020,38(8):961-967
制备了羰基铁粉掺杂硅胶整体柱,用于拟除虫菊酯类农药残留萃取,并与气相色谱-串联质谱(GC-MS/MS)法联用,建立了在线富集、热解吸GC-MS/MS测定茶叶样品中拟除虫菊酯类农药残留方法。研究将端羟基聚二甲基硅氧烷共价键合到SiO2网络表面,并同时键合羰基铁粉。将目标分析物吸附并浓缩在聚二甲基硅氧烷位点上后,利用羰基铁粉的高频感应加热特性成功实现了GC-MS/MS直接气体进样并可达到快速、均匀解吸的目的。实验结果表明,在最佳条件下,本方法的富集倍数可达到约1000倍。拟除虫菊酯类农药残留的检出限为3.8~7.5 μg/kg,相对标准偏差为3.2%~6.8%(n=6)。该方法的提取回收率为97.7%~110.5%,相关系数≥0.9960。该法的吸附容量大,在电磁感应的条件下进行热脱附继而直接与GC-MS结合实现在线分析以及无溶剂洗脱。与常规固相微萃取(SPME)方法相比,该方法具有富集因子高、整体柱吸附容量大、可重复使用、自动化程度高、普适性好等优点。在样品前处理及复杂基质中农药残留的提取方面具有重要的研究意义。  相似文献   

6.
Two approaches based on sorptive extraction, solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE), in combination with liquid chromatography (LC)-atmospheric pressure chemical ionization mass spectrometry (MS) have been assayed for analyzing chlorpyriphos methyl, diazinon, fonofos, phenthoate, phosalone, and pirimiphos ethyl in honey. In both, SPME and SBSE, enrichment was performed using a poly(dimethylsiloxane) coating. Significant parameters affecting sorption process such as sample volume, sorption and desorption times, ionic strength, elution solvent, and dilution (water/honey) proportion were optimized and discussed. Performance of both methods has been compared through the determination of linearity, extraction efficiencies, and limits of quantification. Relative standard deviations for the studied compounds were from 3 to 10% by SPME and from 5 to 9% by SBSE. Both methods were linear in a range of at least two orders of magnitude, and the limits of quantification reached ranging from 0.04 to 0.4 mg kg(-1) by SBSE, and from 0.8 to 2 mg kg(-1) by SPME. The two procedures were applied for analyzing 15 commercial honeys of different botanical origin. SPME and SBSE in combination with LC-MS enabled a rapid and simple determination of organophosphorus pesticides in honey. SBSE showed higher concentration capability (large quantities of sample can be handled) and greater accuracy (between 5 and 20 times) and sensitivity (between 10 and 50 times) than SPME: thus, under equal conditions, SBSE is the recommended technique for pesticide analysis in honey.  相似文献   

7.
A method for determining 68 pesticides in river water using stir bar sorptive extraction (SBSE)-thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) is described. SBSE sampling was optimized for sample solution pH, salting-out and methanol addition. Although salting-out enhanced the ability of the method to extract most of the pesticides with low absolute recoveries, the absolute recoveries of four pesticides were not improved by salting-out. The detection limits of the method for the pesticides ranged from 0.2 to 20 ng/l. Analyte recoveries from a river water sample spiked with standards at 10 and 100 ng/l were 58.5–132.0% (RSD: 1.8–15.8%) and 61.0–121.3% (RSD: 1.4–20.2%), respectively.  相似文献   

8.
In this study,an effort has been made to evaluate the pesticide residues in vegetables from western China. Fifty‐one pesticides, including organophosphorus, organochlorine, carbamate and pyrethroid, were detected in 369 commonly used vegetables by GC‐MS. Concentrations of organophosphorus pesticides were detected ranging from 0.0008 to 18.8200 mg/kg, among which organophosphorus pesticide concentrations exceeded their maximum residue levels (MRLs) in five samples. Carbamate and organochlorine pesticides were determined to have concentrations in the range of 0.0012–0.7928 mg/kg. The residual concentrations of carbamate pesticides in six samples and organochlorine pesticides in four samples exceeded their MRLs. The residual concentrations of five pyrethroid pesticides were within the range of 0.0016–6.0827 mg/kg and the pyrethroid residues in two samples exceeded their MRLs. The results revealed that pesticide residues in 70.73% of the vegetables samples were not detected, while in the rest of vegetables there were one or more pesticide residues and some even exceeded their MRLs, which would threaten the health of consumers. Our work provides significant information for the food safety regulations to control the excessive use of some pesticides on those kinds of vegetables from western China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A sample preparation method based on single solvent phase extraction and solid-phase extraction (SPE-NH2) clean-up is studied in combination with fast capillary gas chromatography (GC) to determine 18 selected pesticides belonging to various chemical classes in apples, the common raw material for baby food production and baby food, at the concentration level < or = 10 microg/kg maximum residual limit (MRL). Possibilities of mass spectrometry (MS) detector and electron capture detector (ECD) in fast gas chromatography (GC) of samples with complex matrice at ultra trace levels of pesticide residues were studied and compared. MS detection in single ion monitoring (SIM) mode provided higher selectivity compared to ECD. Optimisation of extraction as well as the simplifying of the whole process of sample preparation was carried out. Recoveries obtained at concentration level of 5 microg/kg (the required value for limit of quantification (LOQ) in baby food) were >90%, except of dimethoate (77.7%) and captan (46.4%) with MS detection. The obtained LOQs were at least 1 order lower than 5 microg/kg for the majority of compounds. The repeatability of gas chromatography-mass spectrometry (GC-MS) measurements of the matrix matched standards expressed as relative standard deviation was <11% except of captan and cypermethrin.  相似文献   

10.
A method for fast screening of pesticide multiresidues in aqueous samples using dual stir bar sorptive extraction-thermal desorption-low thermal mass gas chromatography-mass spectrometry (dual SBSE-TD-LTM-GC-MS) has been developed. Recovery of 82 pesticides - organochlorine, carbamate, organophosphorous, pyrethroid and others - for the SBSE was evaluated as a function of octanol-water distribution coefficients (logK(o/w): 1.7-8.35), sample volume (2-20mL), salt addition (0-30% NaCl), and methanol addition (0-20%). The optimized method consists of a dual SBSE performed simultaneously on respectively a 20-mL sample containing 30% NaCl and a 20-mL sample without modifier (100% sample solution). One extraction with 30% NaCl is mainly targeting solutes with low K(o/w) (logK(o/w)<3.5) and another extraction with unmodified sample solution is targeting solutes with medium and high K(o/w) (logK(o/w)>3.5). After extraction, the two stir bars are placed in a single glass desorption liner and are simultaneously desorbed. The desorbed compounds are analyzed by use of LTM-GC-MS with fast temperature programming (75 degrees Cmin(-1)) using a 0.18mm i.d. narrow-bore capillary column and fast scanning (10.83 scan s(-1)) using quadrupole MS. The method showed good linearity (r(2)>0.9900) and high sensitivity (limit of detection: <10ngL(-1)) for most of the target pesticides. The method was applied to the determination of pesticides at nanograms per liter levels in river water and brewed green tea.  相似文献   

11.
采用QuEChERS方法结合气相色谱-串联质谱法(GC-MS/MS)建立了蔬菜、水果中129种农药残留同时检测的分析方法。试样用1%乙酸乙腈均质提取,采用混合型固相分散萃取剂净化后,用GC-MS/MS在多反应离子监测(MRM)模式下进行检测,外标法定量。结果表明,129种药物在一定的含量范围内线性关系良好,相关系数(r2)均大于0.98;不同基质在10 μg/kg添加水平下大部分农药的平均回收率为66.2%~124.7%,相对标准偏差(RSD)为0.9%~24.4%;方法的定量限(LOQ)为0.03~16.7 μg/kg。结果表明,该方法简便快速、灵敏可靠、经济有效,适用于蔬菜、水果中农药多残留的同时快速筛查测定。  相似文献   

12.
张帆  黄志强  张莹  李忠海  王美玲 《色谱》2010,28(4):348-355
建立了食品中20种氨基甲酸酯类农药残留量的高效液相色谱-串联质谱联用(HPLC-MS/MS)测定与确证方法。20种氨基甲酸酯类农药在0.005~0.1 mg/kg范围内线性良好,相关系数为0.991 7~0.999 6;在0.005~0.025 mg/kg范围内, 20种目标物的回收率为51.2%~125.0%,相对标准偏差为1.4%~19.8%。该方法准确、灵敏、快速,可满足国际上对食品中这20种氨基甲酸酯类农药残留量的检测需要。  相似文献   

13.
A multiresidue method for analysis of 90 pesticides with different physico-chemical properties in fruits and vegetables was developed. The method involves a rapid and small-scale extraction procedure with acetone using vortex mixing. Solid-phase extraction (SPE) on a highly cross-linked polystyrene divinylbenzene column (LiChrolut EN) was used for clean-up and pre-concentration of the pesticides from the water-diluted acetone extracts. For most fruit and vegetable samples this partial clean-up was sufficient, but some of them with more co-extracting substances need further clean-up (cereals, spinach, carrots, etc.). Diethylaminopropyl (DEA) modified silica was used for efficient removal of interferences caused by various organic acids, sugars, etc. The pesticide residues were determined by gas chromatography with a mass selective detector (GC-MS). The majority of pesticide recoveries for various fruits and vegetables were >80% in the concentration range from 0.01 to 0.50 mg/kg, except for the most polar pesticides (methamidophos, acephate, omethoate) which cannot be determined by this method. The limit of quantitation for most of the pesticides was 0.01 mg/kg with majority of relative standard deviations (R.S.D.s) below 10%.  相似文献   

14.
李婷  常蒙蒙  石先哲  许国旺 《色谱》2021,39(9):930-940
极性农药包括杀菌剂、除草剂、杀虫剂等,种类丰富,成本低廉,在农业中应用广泛,其滥用易导致水资源和土壤等环境污染,人类通过间接接触动植物源性食品和环境中的极性农药残留也增加了农药暴露风险。极性农药的物理化学性质差异大,通常痕量存在于食品和环境样品等复杂基质中,这对其准确检测分析带来了挑战。分子印迹聚合物(MIPs)作为一种人工制备的选择性吸附剂,具有与模板分子在空间结构、大小尺寸和功能基团上互补的特定识别位点,且易于制备,成本低,稳定性好,重复利用率高,已被广泛用于极性农药残留的样品前处理和分析检测中。MIPs可以作为固相萃取(SPE)、固相微萃取(SPME)、磁性固相萃取(MSPE)、搅拌棒固相萃取(SBSE)等前处理方法的吸附剂,还可用于制备光、电、化学传感器,作为质谱检测的离子源基底和拉曼光谱的增强基底。目前针对极性农药残留的检测,已有许多研究报道了多种分子印迹材料用于高效分离分析各种复杂基质中的极性农药残留,但未见此方面的综述报道。该文首先介绍了MIPs的印迹策略、聚合策略,并针对传统MIPs制备和应用中存在的问题,简要概括了一些新型的分子印迹策略和制备技术;然后从极性农药残留分析的角度出发,总结归纳了分子印迹材料近年来特别是近5年来在各种极性农药残留(包括新烟碱类、有机磷类、三嗪类、唑类、脲类等)检测中的应用,并针对现存问题展望了其未来的发展方向和趋势。  相似文献   

15.
R.M. Callejon  A.M. Troncoso  M.L. Morales   《Talanta》2007,71(5):1610-2097
A complete methodology for the determination of chloroanisoles and chlorophenols in cork material is proposed. The determination is accomplished by means of a previous liquid–solid extraction followed by stir bar sorptive extraction (SBSE) coupled to gas chromatography–mass spectrometry (GC–MS). Two different liquid–solid extraction experiments were conducted and eight compounds considered (2,6-dichloroanisole, 2,4-dichloroanisole, 2,4,6-trichloroanisole, 2,4,6-trichlorophenol, 2,3,4,6-tetrachloroanisole, 2,3,4,6-tetrachlorophenol, pentachloroanisole and pentachlorophenol). From the results obtained we can conclude that high volume extraction extending extraction time up to 24 h is the best choice if we have to release compounds from the inner surfaces of cork stoppers. Recovery percentages ranged from 51% for pentachloroanisole to 81% for 2,4-dichloroanisole. This method allows the determination of an array of compounds involved in cork taint at very low levels from 1.2 ng g−1 for 2,4,6-tricholoroanisole to 23.03 ng g−1 for 2,3,4,6-tetrachlorophenol.  相似文献   

16.
A gas chromatographic–tandem mass spectrometric (GC–MS–MS) method for analysis of 30 multi-class pesticide residues in four vegetables (cucumber, marrow, pepper, and eggplant) and two fruits (melon and watermelon) has been developed and validated. The performance characteristics linearity, detection limit (LOD), quantification limit (LOQ), precision, and recovery were studied. The effect of the matrix on the calibration step was studied by comparing calibration curves and recoveries for each food commodity. Two different food commodities, cucumber and watermelon, were selected as potential reference matrixes for the target vegetables and fruits, respectively.  相似文献   

17.
A sensitive multi-residue analytical method, utilizing ethyl acetate extraction and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS), has been developed and validated for simultaneous determination of 28 pesticides of different chemical classes (polar organophosphates, carbamates, strobilurines, neonicotinoids, amides, pyrimidines, benzimidazoles, imidazoles and triazoles), and their transformation products, in processed fruit and vegetables. Two precursor-product ion transitions were monitored for each pesticide in selected reaction monitoring (SRM) mode. Linearity (r (2) > or = 0.99) was good over the concentration range 0.5 to 100 microg L(-1) for all the pesticides, and instrumental detection limits ranged from 0.1 to 1 microg L(-1). Mean recovery for fruit and vegetables spiked at 0.010 mg kg(-1) ranged from 65 to 94.4%, and relative standard deviations ranged from 9.0 to 20.0%. When the amount spiked was 0.050 mg kg(-1) recoveries ranged from 72.5 to 90% and relative standard deviations were from 6.1 to 19.0%. Method detection limits were from 0.002 to 0.007 mg kg(-1) for the different food matrices studied. The method was used to monitor pesticide residues in a wide variety of fruits and vegetables.  相似文献   

18.
A new analytical procedure using a hollow fiber supported liquid membrane (HFSLM) has been developed for the simultaneous determination of pesticide residues in vegetables by liquid chromatography (LC) coupled with electrospray mass spectrometry (MS). The extraction technique requires minimal sample preparation and solvent consumption. Optimum extraction conditions have been evaluated with respect to sample pH, ionic strength, liquid membrane composition, extraction time, stirring rate and acceptor composition. The extraction method has been validated for matrices such as cucumber, tomato and pepper, indicating that cucumber can be selected as representative matrix for routine analysis of these food commodities. Linear ranges of pesticides in vegetable samples were 10 to 200 microg/kg, and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.06 to 2.7 microg/kg and the limits of quantification from 0.2 to 9.0 microg/kg, which were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRLs) specified by European Union. The method was finally applied to the determination of more than 20 pesticides in market vegetable samples and the concentrations found in these samples were always lower than the MRLs. This new approach can be considered as a powerful alternative to the traditional extraction techniques.  相似文献   

19.
A multiresidue method for the determination of 35 organic micropollutants (pesticides and polycyclic aromatic hydrocarbons) in water has been optimised using stir bar sorptive extraction (SBSE) and thermal desorption coupled to capillary gas chromatography-mass spectrometry (GC-MS). In the present work, the different parameters affecting the extraction of the analytes from the water samples to the PDMS-coated stir bars and optimisation of conditions affecting thermal desorption are investigated. The optimised conditions consist of a 100-ml water sample with 20% NaCl addition extracted with 20 mm length x 0.5 mm film thickness stir bars at 900 rpm during 14 h at ambient temperature. Desorption is carried out at 280 degrees C during 6 min under a helium flow of 75 ml/min in the splitless mode while maintaining a cryofocusing temperature of 20 degrees C in the programmed-temperature vaporisation (PTV) injector of the GC-MS system. Finally, the PTV injector is ramped to a temperature of 280 degrees C and the analytes are separated in the GC and detected by MS using full scan mode (m/z 60-400). Under the described conditions, the good repeatability, high analyte recoveries and robustness, make SBSE a powerful tool for routine quality control analysis of the selected semivolatile compounds in water samples.  相似文献   

20.
We developed a new analysis method for the nine N-methyl carbamate pesticides in fruits and vegetables using ESI LC/MS/MS with direct sample injection into a short column. After extraction of the pesticides with ethyl acetate from sample, the extract is evaporated to dryness and redissolved in ultra pure water before injection into LC/MS/MS. The method needs no cleanup steps. The average recoveries from fruits and vegetables fortified at the level of 0.01 μg/g ranged from 56.0 to 119.1% with the coefficients of variation ranging from 0.2 to 7.6% for intra-day (n = 5 × 3 days) and from 0.8 to 18.4% for inter-day (n = 15). At the fortified level of 0.5 μg/g, the recoveries ranged from 67.7 to 119.3% with the coefficients of variation ranging from 0.5 to 7.8% for intra-day (n = 5 × 3 days) and from 0.9 to 14.8% for inter-day (n = 15). The method is considered to be satisfactory for the monitoring of the carbamate pesticide residues in fruits and vegetables, suggesting that the present method is applicable to other pesticide residues in foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号