首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of a jet flow formed by the combustion products of conical propane-air flame and impinging onto a normally oriented flat cooled surface is studied experimentally. The velocity field is measured by the particle image velocimetry technique. Based on the non-intrusive measurements, formation of a recirculation zone in the flow between the flame cone and surface has been detected for the first time. Mechanism for the observed phenomenon is proposed. Presence of the low-intensity recirculation bubble on the jet axis can explain the effect of a heat transfer decrease near the stagnation point on the surface, observed in the previous studies.  相似文献   

2.
We review the state of the art in measurements and simulations of the behavior of premixed laminar and turbulent flames, subject to differential diffusion, stretch and curvature. The first part of the paper reviews the behavior of premixed laminar flames subject to flow stretch, and how it affects the accuracy of measurements of unstrained laminar flame speeds in stretched and spherically propagating flames. We then examine how flow field stretch and differential diffusion interact with flame propagation, promoting or suppressing the onset of thermodiffusive instabilities. Secondly, we survey the methodology for and results of measurements of turbulent flame speeds in the light of theory, and identify issues of consistency in the definition of mean flame speeds, and their corresponding mean areas. Data for methane at a single operating condition are compared for a range of turbulent conditions, showing that fundamental issues that have yet to be resolved for Bunsen and spherically propagating flames. Finally, we consider how the laminar flame scale response of flames to flow perturbations interacting with differential diffusion leads to very different outcomes to the overall sensitivity of the burning rate to turbulence, according to numerical simulations (DNS). The paper concludes with opportunities for future measurements and model development, including the perennial recommendation for robust archival databases of experimental and DNS results for future testing of models.  相似文献   

3.
Direct numerical simulation (DNS) was used to study modelling assumptions for the curvature-propagation component of flame stretch in the thin reaction zones regime of turbulent premixed combustion, a regime in which small eddies can penetrate the preheat zone but not the thinner fuel breakdown zone. Simulations of lean hydrogen–air and methane–air flames were conducted, and statistics of flame stretch due to curvature, henceforth referred to simply as stretch, were extracted from a species mass fraction iso-surface taken to represent the flame. The study focussed on investigating the modelling assumptions of Peters [J. Fluid Mech. 384 (1999) 107]. It was found that the mean stretch is dominated by stretch due to correlations of flame speed with curvature, and specifically the effects of tangential diffusion. The modelling suggestions of Peters were found to provide an improvement over the assumptions of a constant flame speed or a flame speed governed by the linear relationship with stretch at small and steady stretch. However for the conditions considered here, diffusive-thermal effects remain well into the thin reaction zones regime, and the suggestions of Peters generally over-predict the mean compressive stretch. An effective diffusivity for flame stretch was suggested and evaluated for the methane simulations. It was found that the effective diffusivity was comparable to the mass diffusivity for flames with a high ratio of flame time to eddy turnover time. The length scales contributing to stretch were investigated, and it was found that while most flame area has a radius of curvature greater than the laminar flame thickness, most stretch occurs in more tightly curved flame elements.  相似文献   

4.

An experimental study has been conducted to find the heat transfer characteristics of methane/air flames impinging normally to a flat surface using different burner geometries. The burners used were of nozzle, tube, and orifice type each with a diameter of 10 mm. Due to different exit velocity profiles, the flame structures were different in each case. Because of nearly flat velocity profile, the flame spread was more in case of orifice and nozzle burners as compared to tube burner. Effects of varying the value of Reynolds number (600–2500), equivalence ratio (0.8–1.5) and dimensionless separation distance (0.7–8) on heat transfer characteristics on the flat plate have been investigated for the tube burner. Different flame shapes were observed for different impingement conditions. It has been observed that the heat transfer characteristics were intimately related to flame shapes. Heat transfer characteristics were discussed for the cases when the flame inner reaction cone was far away, just touched, and was intercepted by the plate. Negative heat fluxes at the stagnation point were observed when the inner reaction cone was intercepted by the plate due to impingement of cool un-burnt mixture directly on the surface. Different heat transfer characteristics were observed for different burner geometries with similar operating conditions. In case of tube burner, the maximum heat flux is around the stagnation point and decay is faster in the radial direction. In case of nozzle and orifice burner, the heat transfer distribution is more uniform over the surface.  相似文献   

5.
We investigated the local flame speed of a two-dimensional, methane-air triple flame in a rectangular burner. The velocity fields and the concentration profiles were measured with particle image velocimetry and the Rayleigh scattering method, respectively. There was a requisite combination of initial velocity and initial concentration gradient for consistency of the local concentration gradient at the leading edge of the flame. In these cases, the flame curvatures were also consistent. Accordingly, the burning velocity, defined as local flow velocity at the triple point, was determined by the flame curvature. The burning velocity increased with increasing flame curvature, when the curvature was near zero. After that, the burning velocity decreased with increasing curvature. The peak value thus exceeded the adiabatic one-dimensional laminar burning velocity. Comparing the effects of the measured flame stretch rate on the flow strain κs and flame curvature κc, κs is larger and increases more rapidly than κc for flame curvatures satisfying 1/Rf < 250 m−1 and then becomes constant while κc still increases for 250 m−1 < 1/Rf, so that κc becomes much larger than κs. There is also a peak in burning velocity at roughly the transition in flame curvature specified above. Therefore, the burning velocity for a low concentration gradient correlates with the flame stretch rate.  相似文献   

6.
Dynamic features of a freely propagating turbulent premixed flame under global stretch rate oscillations were investigated by utilizing a jet-type low-swirl burner equipped with a high-speed valve on the swirl jet line. The bulk flow velocity, equivalence ratio and the nominal mean swirl number were 5 m/s, 0.80 and 1.23, respectively. Seven velocity forcing amplitudes, from 0.09 to 0.55, were examined with a single forcing frequency of 50 Hz. Three kinds of optical measurements, OH-PLIF, OH* chemiluminescence and PIV, were conducted. All the data were measured or post-processed in a phase-locked manner to obtain phase-resolved information. The global transverse stretch rate showed in-phase oscillations centering around 60 (1/s). The oscillation amplitude of the stretch rate grew with the increment of the forcing amplitude. The turbulent flame structure in the core flow region varied largely in axial direction in response to the flowfield oscillations. The flame brush thickness and the flame surface area oscillated with a phase shift to the stretch rate oscillations. These two properties showed a maximum and minimum values in the increasing and decreasing stretch periods, respectively, for all the forcing amplitudes. Despite large variations in flame brush thickness at different phase angles, the normalized profiles collapse onto a consistent curve. This suggests that the self-similarity sustains in this dynamic flame. The global OH* fluctuation response (i.e. response of global heat-release rate fluctuation) showed a linear dependency to the forcing velocity oscillation amplitudes. The flame surface area fluctuation response showed a linear tendency as well with a slope similar to that of the global OH* fluctuation. This indicated that the flame surface area variations play a critical role in the global flame response.  相似文献   

7.
Premixed turbulent flames of methane–air and propane–air stabilized on a bunsen type burner were studied using planar Rayleigh scattering and particle image velocimetry. The fuel–air equivalence ratio range was from lean 0.6 to stoichiometric for methane flames, and from 0.7 to stoichiometric for propane flames. The non-dimensional turbulence rms velocity, u′/SL, covered a range from 3 to 24, corresponding to conditions of corrugated flamelets and thin reaction zones regimes. Flame front thickness increased slightly with increasing non-dimensional turbulence rms velocity in both methane and propane flames, although the flame thickening was more prominent in propane flames. The probability density function of curvature showed a Gaussian-like distribution at all turbulence intensities in both methane and propane flames, at all sections of the flame.The value of the term , the product of molecular diffusivity evaluated at reaction zone conditions and the flame front curvature, has been shown to be smaller than the magnitude of the laminar burning velocity. This finding questions the validity of extending the level set formulation, developed for corrugated flames region, into the thin reaction zone regime by increasing the local flame propagation by adding the term to laminar burning velocity.  相似文献   

8.
9.
Simultaneous measurements of temperature, CH* and OH* chemiluminescent species are carried out to explore the impact of stretch rate and curvature on the structure of premixed flames. The configuration of an initially flat premixed flame interacting with a toroidal vortex is selected for the present study and reasons for this choice are discussed. Lewis number effects are assessed by comparing methane and propane flames. It is emphasized that the flame structure experiences very strong variations. In particular, the flame is shrunk (broadened) in the initial (final) period of the interaction with the vortex where strain rate (curvature) contribution of the stretch rate is predominant. By further analysing independently the thickness of the preheat and reaction zones, it is shown that for propane flames, not only the former but also the latter is significantly altered in zones where the flame curvature is negative. Changes in the reaction zone properties are further emphasized using CH* and OH* radicals. It is demonstrated that higher thermal diffusivity plays a significant role around curved regions, in which the enhanced diffusion of heat leads to a strong increase of CH* compared to OH* intensity. As an overall conclusion, this study suggests that it would be interesting to reassess the internal flame structure at lower and moderate Karlovitz numbers since changes might appear for a moderate vortex intensity with typical size much larger than the flame thickness.  相似文献   

10.
We use direct numerical simulation of propane/air flames with full chemistry in the geometry of stagnation flow to investigate the effect of different definitions of local flame stretch in the presence of spatially varying velocity gradients. Specifically, we compare simulations with potential- and plug-flow inlet conditions, and show that the widely used definition of upstream stretch leads to unphysical results for flames having the ‘same’ stretch. We then show that a reasonable re-definition of local stretch allows us to produce the ‘same’ flame in the presence of the ‘same’ stretch.  相似文献   

11.
Combustion dynamics of inverted conical flames   总被引:2,自引:0,他引:2  
An inverted conical flame anchored on a central bluff-body in an unconfined burner configuration features a distinctive acoustic response. This configuration typifies more complex situations in which the thermo-acoustic instability is driven by the interaction of a flame with a convective vorticity mode. The axisymmetric geometry investigated in this article features a shear region between the reactive jet and the surrounding atmosphere. It exhibits self-sustained oscillations for certain operating conditions involving a powerful flame collapse phenomenon with sudden annihilation of flame surface area. This is caused by a strong interaction between the flame and vortices created in the outer jet shear layer, a process which determines the amplitude of heat release fluctuation and its time delay with respect to incident velocity perturbations. This process also generates an acoustic field that excites the burner and synchronizes the vortex shedding mechanism. The transfer functions between the velocity signal at the burner outlet and heat release are obtained experimentally for a set of flow velocities fluctuations levels. It is found that heat release fluctuations are a strong function of the incoming velocity perturbation amplitude and that the time delay between these two quantities is mainly determined by the convection of the large scale vortices formed in the jet shear layer. A model is formulated, which suitably describes the observed instabilities.  相似文献   

12.
Flame particles (FP) are massless, virtual particles which follow material points on the flame surface. This work presents a tracking algorithm for FPs which utilizes barycentric coordinates. The methodology can be used with any cell shape in the computational mesh and allows computationally fast spatial interpolation as well as efficient determination of the intersection of FP trajectories with iso-surfaces. In contrast to previous flame particle tracking (FPT) approaches, the code is fully parallelized and can therefore be used in-situ during the simulation. It also includes fully parallelized computation of flame consumption speed by integrating reaction rates along a line normal to the flame surface at each FP position. Direct numerical simulations of laminar pulsating premixed hydrogen–air Bunsen flames serve as validation cases and showcase the added value of tracking material points for studying local flame dynamics. Exciting the inlet flow harmonically with frequencies equal to the inverse flame time scale leads to a pulsating mode where the flame front is corrugated. Ten times higher frequencies nearly resemble the steady state solution. The FPs are seeded along the flame surface and are used to track the unsteady diffusive, convective and chemical contributions at arbitrary points on the flame front over time. Their trajectories reveal a phase shift between the unsteady flame stretch rate and local flame speed of the order of 0.1 flame time scales for rich hydrogen flames. This is caused by a time delay between straining and stretch due to curvature. The reason is that diffusive processes follow the time signal of curvature while chemical processes are most strongly affected by the straining rate, which dominates the high Lewis number hydrogen flames investigated. This time history effect may help to explain the large scattering in the correlation of local flame speed with flame stretch found in turbulent flames.  相似文献   

13.
本文采用组合扩散系数方法处理不同气体组分之间的扩散,对氩等离子体的流射入空气环境并撞击平板时的层流流动和传热进行了数值模拟.这种新的处理混合气体中质量扩散的方法有助于更准确地描述等离子体条件下的组分扩散与能量输运。文中给出了射流中速度、温度及氩质量分数的分布情况,以及基板处热流密度分布的若干典型的数值模拟结果.  相似文献   

14.
A piloted, partially premixed, liquid-fueled swirl burner is operated at high pressure (1 MPa). High-speed (6 KHz) stereoscopic PIV is used to investigate the characteristics of the stagnation line separating the pilot jet and the central recirculation zone (CRZ) with varying pilot-main ratio and global equivalence ratio. The mean curvature of the stagnation line displayed a large spatial scale pattern that was present for all operating conditions. All three components of velocity, in-plane shear, and swirling strength are conditioned upon the instantaneous stagnation line. Mean distributions of the velocity normal to the stagnation line show that velocity is oriented towards the CRZ when the stagnation line is found nearer the centerline of the combustor. The conditioned out-of-plane velocity (w) shows a distinct concentration of large mean and fluctuation RMS values towards the center of the measurement domain. Varying fuel flow does not significantly change this spatial structure, only the magnitudes of the w statistics. The in-plane shear stress was the largest for the pilot biased condition as a stronger shear layer develops. For the leanest flame, large fluctuation RMS values of shear stress were confined to a region where the pilot jet begins to interact more heavily with the main jet. Operating with less pilot fuel flow enhanced the mean conditional swirling strength indicating that the pilot shear layer was shedding more intense eddies. Disregarding spatial relations, a scatter plot of w, shear stress, and swirling strength displayed trends between the variables. The largest swirling strength values coincide with highest magnitude shear stresses and the widest range of w. These conditioned statistics highlight how certain aspects of the combustor flow field are invariant with fuel distribution. This is desirable for aeropropulsive combustors that must maintain stable ignition from a range of conditions from landing/take-off to cruise.  相似文献   

15.
We have investigated the downward flame spread over a thin solid fuel. Hydrogen, methane, or propane, included in the gaseous product of pyrolysis reaction, is added in the ambient air. The fuel concentration is kept below the lean flammability limit to observe the partially premixing effect. Both experimental and numerical studies have been conducted. Results show that, in partially premixed atmospheres, both blue flame and luminous flame regions are enlarged, and the flame spread rate is increased. Based on the flame index, a so-called triple flame is observed. The heat release rate ahead of the original diffusion flame is increased by adding the fuel, and its profile is moved upstream. Here, we focus on the heat input by adding the fuel in the opposed air, which could be a direct factor to intensify the combustion reaction. The dependence of the flame spread rate on the heat input is almost the same for methane and propane/air mixtures, but larger effect is observed for hydrogen/air mixture. Since the deficient reactant in lean mixture is fuel, the larger effect of hydrogen could be explained based on the Lewis number consideration. That is, the combustion is surely intensified for all cases, but this effect is larger for lean hydrogen/air mixture (Le < 1), because more fuel diffuses toward the lean premixed flame ahead of the original diffusion flame. Resultantly, the pyrolysis reaction is promoted to support the higher flame spread rate.  相似文献   

16.
Optimum conditions for the flame synthesis of diamond films have been studied by examining effects of the equivalence ratio, ejection velocity, and velocity gradient on the growth rates and morphologies of diamond films. Important factors that can affect growth rates and morphologies of diamond films deposited in the flame are confirmed to be temperature, flow, and species concentration fields. By use of a flat flame burner, these influences are well understood because the flat acetylene/hydrogen/oxygen flame is stabilized in a well-defined stagnation flow field, which can be regarded as one-dimensional field. It is found that the maximum growth rate can be obtained when the equivalence ratio is from 2.45 to 2.50. It has also been confirmed that the growth rate is nearly the same when the velocity gradient is kept constant. This result indicates that the velocity gradient is one of the important parameters that can govern the growth rate of diamond film. Furthermore, in order to obtain universal, optimum conditions for the flame synthesis of diamond films, an attempt has been conducted to make a map of the growth rates, as functions of equivalence ratio and velocity gradient. Although growth rates increase with increasing velocity gradient, excessively high velocity gradients cause decrease in growth rates. It is found that the maximum growth rate can be obtained when the equivalence ratio is around 2.50 and velocity gradient is 4000 s−1.  相似文献   

17.
It has been shown both theoretically and experimentally that combustion within porous inert media can extend the flammability limits of reactant mixtures for unstretched stationary premixed flames. However little attention has been given to flames within porous media submitted to stretch conditions. This work presents a closed form approximate analytical solution for the problem of ultra-lean premixed flames within porous inert media subjected to small stretch rates in an impinging flow configuration against a constant temperature wall. The solution is obtained using the method of matched asymptotic expansions taking advantage of the large difference between the solid- and gas-phase thermal conductivities. The model allows for thermal nonequilibrium between the phases and is able to predict the flame temperature, velocity and position as function of the stretch rate. The results show that within porous media low stretch rates may increase the flame temperature, further extending the lean flammability limit of the reactant mixture when compared to planar flames. The model is restricted to low porosities, low stretch rates, low heat losses and intense interphase heat transfer.  相似文献   

18.
The temperature field of a premixed methane symmetric laminar flame jet is visualized by studying the interferograms of the flame, using the Mach-Zehnder Interferometry. Two kinds of oxidizers are chosen for combustion: industrially pure oxygen and oxygen-enriched air. The flame is chosen to be both lean, and rich. For the lean oxygen-enriched combustion (OEC), the equivalence ratio was held constant at 0.5, and the oxygen enrichment was adjusted to 0.5 and 0.6, and for rich OEC, equivalence ratio is chosen to be 1.2 while the oxygen enrichment was 0.7 and 0.8. For methane/oxygen combustion, the equivalence ratio varied from 0.35 to 0.55 for the lean flame, and 1.3 and 1.7 for the rich flame. Attempt was made to keep the Reynolds number unchanged at 500, for OEC, and 1000, for methane/oxygen flame. In the present study a non-contact method is successfully developed to measure the temperature field of a premixed radially symmetric laminar methane flame jet. The effect of oxygen enrichment and equivalence ratio on temperature field is also investigated and depicted.  相似文献   

19.
Extinction limits and flame bifurcation of lean premixed dimethyl ether–air flames are numerically investigated using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether–air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase in the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase in the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits is obtained.  相似文献   

20.
The Markstein number characterizes the effect that flame stretch has on the burning velocity. Different expressions for this number are deduced from integral analysis. According to a phenomenological law, the Markstein number can be separated into a part for the curvature of the flame and a part for the straining of the flow. This separation is analysed here. It appears that the Markstein number for curvature and the combined one for both curvature and strain are unique. It is, however, not possible to introduce a separate and unique Markstein number for the flow straining that can be used to describe its influence in different combustion situations. The theoretical and numerical analysis is applied to flat steady counterflow flames as well as to steady, imploding and expanding spherical flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号