首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The low-lying conformers of the dipeptides HisGly and GlyHis, and of their sodium cation complexes, have been studied with a combination of Monte Carlo search with the Amber force field and local geometry optimization at the ab initio HF/6-31G(d) level, completed with MP2(full)/6-311+G(2d,2p) energetics at the HF/6-31G(d) geometries. For each dipeptide, both the N(delta)-H and N(epsilon)-H tautomers of the imidazole side chain of His were considered. For each of the four isomeric dipeptides, 20-30 conformers were fully characterized at the ab initio level. All low energy structures are found to involve H-bonding at the N(delta) position of imidazole, either as a N-H donor or a N acceptor, depending upon the tautomer. In three out of the four species, the most stable conformer involves a C-terminus carboxylic acid in its less favorable trans conformation, in order to maximize intramolecular H bonding. It turns out that the lowest energy tautomer of HisGly is N(epsilon)-H, while that of GlyHis is N(delta)-H. This result argues in favor of the diversity of His tautomeric states in peptides and proteins. The sodium cation complexes of both GlyHis and HisGly have been studied as well, again considering both tautomers in each case. In three out of the four species, the most stable structure involves chelation of sodium by the two carbonyl oxygens and the imidazole ring. On the contrary, the sodium complex of the N(delta)-H tautomer of HisGly favors chelation to the peptidic carbonyl oxygen, the imidazole ring and the amino terminus. In the N(epsilon)-H tautomers of both peptides, the most favorable binding site of imidazole is the N(delta) nitrogen, while in the N(delta)-H tautomers, it is the pi cloud which provides side chain interaction. As a result, both GlyHisNa+ and HisGlyNa+ favor the N(epsilon)-H tautomer of His, in contrast to what was found for the free peptides.  相似文献   

2.
N2-hydroxyisocytosine and 1-methyl-N2-hydroxyisocytosine were studied using a matrix isolation technique combined with infrared absorption spectroscopy. For N2-hydroxyisocytosine isolated in an Ar matrix (at 10 K), two imino-oxo isomers, one with the hydroxyimino =N-OH group directed toward the N1-H group (the form called further anti) and the second with the =N-OH group directed toward N3-H (syn), were observed in the ratio 1.4:1. The syn isomer is converted totally to the anti form after UV (lambda > 295 nm) irradiation of the matrix. A small amount of the N(3)H-hydroxy-amino tautomer of N2-hydroxyisocytosine was also detected in the matrix. This form did not react photochemically. For 1-methyl-N2-hydroxyisocytosine, only the syn form of the imino-oxo tautomer was observed after deposition of the matrix. UV (lambda > 295 nm) irradiation induced a photoreaction converting this isomer into the anti form. After 15% of the starting material had been converted into the product, a photostationary state was achieved, and no further progress of the reaction was observed. Subsequent UV irradiation (lambda > 335 nm) caused a back reaction, leading to a disappearance of the anti form and to the recovery of the initial syn isomer. All isomers were identified by comparing their experimental IR spectra with the spectra theoretically calculated at the DFT(B3LYP)/6-31G(d,p) level, where DFT is the density functional theory. Good agreement between the observed and predicted patterns of the spectral lines allowed for reliable identification. The experimental IR spectra were interpreted and discussed. The relative energies of the 12 isomers of N2-hydroxyisocytosine were calculated at the MP2/6-31G(d,p) and MP4//MP2/6-31G(d,p) levels. For six isomers of 1-methyl-N2-hydroxyisocytosine, the calculations were carried out at the MP2/6-31G(d,p) level. The anti form of the imino-oxo tautomer of N-hydroxyisocytosine and the syn form of the imino-oxo tautomer of 1-methyl-N2-hydroxyisocytosine were predicted to be the most stable.  相似文献   

3.
FTIR and IINS spectra of 6-Furfurylaminopurine (6-FAP) and 6-Benzylaminopurine (6-BAP) taken at different temperatures have been analysed and compared with the spectra calculated by the ab initio DFT/B3LYP method and the semiempirical PM3 method in the isolated molecule approximation, for the tautomers N3-H, N7-H and N9-H, and dimers with hydrogen bonds. For 6-FAP the best agreement between the calculated and experimental (at 20 K) spectra has been found for the N9-H tautomer, whose structure was established by X-ray diffraction. For 6-BAP the analogous agreement for the N9-H tautomer structure has been poor and much better for the N7-H tautomer. The vibrational spectra calculated for dimers of the molecules studied involved in hydrogen bonds, permitted also an interpretation of the bands whose positions and FWHM in the FTIR spectra changed with temperature.  相似文献   

4.
The structural features of the 1H‐imidazo[4,5‐c]pyridine (ICPY) tautomers and homodimers of the most stable tautomers have been studied by quantum chemical methods. FTIR and Raman spectra of the ICPY were recorded in the range of 4000–60 cm?1 and 3500–5 cm?1. The predominant tautomer among four possible isomers of ICPY were determined. The optimized geometries and vibrational frequencies of possible ICPY tautomers and dimers were computed by B3LYP/DFT method with 6‐311++G(d,p) and 6‐31G(d) basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution (TED) and isotopic shifts. ICPY dimeric forms were also characterized according to their hydrogen bonding interactions, and it has been found that the most stable ICPY homodimer establishes moderate strong N ? H …N type hydrogen bond. 1H NMR, 13C NMR, and 15N NMR properties have been calculated for all tautomeric forms using the gauge independent atomic orbital (GIAO) method. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
Planar and nonplanar geometries of the keto-N9H and keto-N7H tautomers of the guanine base of DNA as well as the hydrogen bonded complexes of these species with three water molecules each were optimized using the density functional theory at the B3LYP/6-31G** level. Geometries of the isolated bases were also optimized using the ab initio approach at the MP2/6-31G** level. The isolated keto-N9H and keto-N7H tautomers as well as their hydrogen bonded complexes with three water molecules each were solvated in bulk water employing the polarized continuum model (PCM) of the self-consistent reaction field theory (SCRF). Stacked dimers and trimers of both the tautomers of guanine were generated by placing the planar forms of the species at a fixed distance of 3.5 A from the neighboring one and rotating one molecule with respect to the other by 110 degrees for the keto-N9H form and 90 degrees for the keto-N7H form which corresponded to total energy minima at the B3LYP/6-31G** level. Geometry optimization for the cation of the monomer of guanine was performed at the same level of theory, and its solvation in bulk water was treated using the PCM model of the SCRF theory. The geometries of complexes of the two tautomers of guanine with a Na+ ion each were optimized at the B3LYP/6-31G** level, and the Na+ ion is predicted to bind with the keto-N9H tautomer preferentially. While the complex of the keto-N7H form of guanine with three water molecules in gas phase is slightly more stable than the corresponding complex of the keto-N9H form of guanine, the reverse is true in bulk water. Stacking interactions enhance the relative stability of the keto-N9H tautomer over that of the keto-N7H tautomer, suggesting that in bulk solutions, the former would be dominant. Electronic spectra of the isolated tautomers of guanine, those of their complexes with three water molecules each, the (keto-n9h and keto-n7h) cation of guanine, the complexes of the tautomers with a Na+ ion each, the stacked dimers and trimers of the two tautomers were calculated using configuration interaction involving single electron excitations (CIS). The relative absorption intensities of the two tautomers of guanine near 275 and 248 nm in the monomer, dimer, and trimer are predicated to be in the opposite order. Thus the absorption intensity oscillation observed using a guanine aqueous solution can be explained in terms of oscillation of relative populations of the two tautomers of the molecule. The 248 nm absorption peak would be appreciably red-shifted on formation of the cation of guanine. Binding of the Na+ ion with the two tautomers of guanine reduces intensities of their transitions appreciably and also it causes large red-shifts in the same.  相似文献   

6.
Post-Hartree-Fock ab initio quantum chemical calculations were performed for 5-fluorouracil in the gas phase and in a three-water cluster. Full geometry optimizations of the 5-fluorouracil-water complexes were carried out at the MP2/6-31+G(d,p) level of theory. MP4/6-31+G(d,p)//MP2/6-31+G(d,p) and MP4/6-31++G(d,p)//MP2/6-31+G(d,p) single-point calculations were performed to obtain more accurate energies. In water solution, 5-fluorouracil exists mainly in the 2,4-dioxo form (A). We propose that the populations of the 2-hydroxy-4-oxo (B) and 4-hydroxy-2-oxo (D) tautomers are 1 x 10(-4)% and 3.9 x 10(-8)%, respectively, on the basis of the relative stabilities of the tautomers calculated at the MP4/6-31++G(d,p)//MP2/6-31+G(d,p) level of theory. A profound difference between isolated and hydrated 5-fluorouracil is noted for the height of the tautomerization barrier. In the absence of water, the process of proton transfer is very slow. The addition of water molecules decreases the barrier by 2.3 times, making the process much faster. The minimum energy path (MP2/6-31+G(d,p)) for water-assisted proton transfer in trihydrated 5-fluorouracil was followed. CNDO/S-CI calculations predict singlet pi-pi(*) electron transitions at 312 nm for B and at 318 nm for D. The fluorescence spectrum of 5-fluorouracil in water confirms the presence of the hydroxy tautomer.  相似文献   

7.
Optimized geometry and harmonic vibrational frequency of 2-dicyanovinyl-5-(4- ethoxyphenyl)thiophene (C16H12N2OS) are calculated at the HF/6-31++G(d,p) and B3LYP/6- 311++G(d,p) levels. Mulliken charges in the ground state are also calculated. The research shows the presence of intermolecular interaction in the title compound. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. A detailed interpretation of the infrared spectra of the title compound is reported. The theoretical spectrograms for IR spectra of the title compound have been constructed. The isotropic chemical shift computed by 13C and 1H NMR analyses also shows good agreement with the experimental observations.  相似文献   

8.
The cimetidine molecule conformation and tautomer stability was studied at the ab initio HF/6-31G** level and for single point energies at the MP2/6-31G** level. The most stable N3-H cimetidine tautomer was found to be more stable than the most stable N1-H tautomer by ca. 3.7 and 5.0 kcal/mol, at the HF/6-31G** and MP2/6-31G**//HF/6-31G** level, respectively. At the HF/6-31G** level, the most stable N3-H and 1-H forms are stabilized by the intramolecular N3′-H?N1 hydrogen bond and N1-H?N4′, respectively. However, when the correlation effects are included at the MP2/6-31G**//HF/6-31G** level, the most stable N3-H and N1-H tautomers appeared to be folded forms without hydrogen bonds.  相似文献   

9.
Altogether eight keto and enol tautomers of guanine were studied theoretically in the gas phase, in a microhydrated environment (1 and 2 water molecules) and in bulk water. The structures of isolated, as well as mono- and dihydrated tautomers were determined by means of the RI-MP2 method using the extended TZVPP (5s3p2d1f/3s2p1d) basis set. The relative energies of isolated tautomers included the correction to higher correlation energy terms evaluated at the CCSD(T)/aug-cc-pVDZ level. The relative enthalpies at 0 K and relative free energies at 298 K were based on the above-mentioned relative energies and zero-point vibration energies, temperature-dependent enthalpy terms and entropies evaluated at the MP2/6-31G level. The keto form having hydrogen atom at N7 is the global minimum while the canonical form having hydrogen atom at N9 represents the first local minimum at all theoretical levels in vacuo and in the presence of 1 and 2 water molecules. All three unusual rare tautomers having hydrogens at N3 and N7, at N3 and N9, and also at N9 and N7 are systematically considerably less stable and can be hardly detected in the gas phase. The theoretical predictions fully agree with existing theoretical as well as experimental results. The effect of bulk solvent on the relative stability of guanine tautomers was studied by self-consistent reaction field and molecular dynamics free energy calculations using the thermodynamic integration method. Bulk solvent, surprisingly, strongly favored these three rare tautomers over all remaining low-energy tautomers and probably only these forms can exist in water phase. The global minimum (tautomer with hydrogens at N3 and N7) is by 13 kcal/mol more stable than the canonical form (3rd local minimum). Addition of one or two water molecules does not change the relative stability order of isolated guanine tautomers but the respective trend clearly supports the surprising stabilization of three rare forms.  相似文献   

10.
Monomers of hypoxanthine isolated in low-temperature Ar matrixes were studied using Fourier transform infrared spectroscopy. Two most stable tautomeric forms of hypoxanthine: oxo-N(9)-H and oxo-N(7)-H as well as a very small amount of the minor hydroxy-N(9)-H tautomer were observed in Ar matrixes directly after their deposition. UV irradiation of the matrixes induced conversion of the oxo-N(9)-H and oxo-N(7)-H tautomers of the compound into the hydroxy-N(9)-H and hydroxy-N(7)-H forms, respectively. Upon exposure of the matrixes to the UV (lambda > 270 nm) light, the oxo-N(9)-H --> hydroxy-N(9)-H phototautomeric reaction dominated strongly over the oxo-N(7)-H --> hydroxy-N(7)-H phototransformation. The latter phototautomeric reaction occurred effectively when matrix-isolated hypoxanthine was irradiated with shorter-wavelength (lambda > 230 nm) UV light. Thanks to this wavelength dependency, it was possible to clearly distinguish the oxo --> hydroxy photoreaction within the N(9)-H tautomers from the analogous phototautomeric process within the N(7)-H tautomers. All of the observed isomers of hypoxanthine (substrates and products of the photoreactions) were identified by comparison of their IR spectra with the spectra calculated at the DFT(B3LYP)/6-31++G(d,p) level of theory.  相似文献   

11.
Density functional theory with the combined Becke3-LYP exchange-correlation energy functional [DFT(B3-LYP) method] using the 6-31G(d, p) basis set is applied to predict molecular parameters (geometries, rotational constants, dipole moments) and vibrational IR spectra (harmonic wavenumbers, absolute intensities) of six tautomers of the isocytosine molecule. The results are compared with the corresponding data calculated at the conventional ab initio Hartree-Fock (HF) level using the same basis set and with available experimental data. Calculations show that (a) three amino tautomers are slightly nonplanar species with, evidently, a distorted amino group, (b) the DFT (B3-LYP)/6-31G(d, p) method predicts better molecular parameters, than do the HF calculations, and (c) the DFT(B3-LYP)-calculated vibrational IR spectra of isocytosine agree well with the available recorded IR spectra, and they show marked improvement over the IR spectra predicted at the HF/6-31G(d, p) level. Tautomeric stabilities of isocytosine are discussed on the basis of computed electronic energies by the DFT(B3-LYP) and ab initio approaches [including the MP2 and MP4(SDQ) calculations of electronic energies] and predicted zero-point vibrational energies by DFT(B3-LYP) and HF methods. This relative energies at 0 K of the tautomeric forms of isocytosine predicted by both conventional ab initio and DFT(B3-LYP) methods correlate well with the experimental data, showing the predominance of the aminohydroxy tautomer of isocytosine for an isolated molecule. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
Molecular structures of stable tautomers of dimedone [5,5-dimethyl-cyclohexane-1,3-dione (1) and 3-hydroxy-5,5-dimethylcyclohex-2-enone (2)] were optimized and vibrational frequencies were calculated in five different organic solvents (dimethylsulfoxide, methanol, acetonitrile, dichloromethane and chloroform). Geometry optimizations and harmonic vibrational frequency calculations were performed at DFT 6-31+G(d,p), DFT 6-311++G(2d,2p), MP2 6-311++G (2d,2p) and MP2 aug-cc-pVDZ levels for both stable forms of dimedone. Experimental FT-IR spectra of dimedone have also been recorded in the same solvents. A new approach was developed in order to determine tautomers’ ratio using both experimental and theoretical data in Lambert–Beer equation. Obtained results were compared with experimental results published in literature. It has been concluded that while DFT 6-31+G(d,p) method provides accurate enol ratio in DMSO, MeOH, and DCM, in order to obtain accurate results for the other solvents the MP2 aug-cc-pVDZ level calculations should be used for CH3CN and CHCl3 solutions.  相似文献   

13.
The relative stabilities of the tautomers of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one were calculated at the MP2/6-31+G(d,p) level by considering their mono- and trihydrated complexes. Single-point calculations at the MP4/6-31+G(d,p)//MP2/6-31+G(d,p) level of theory were performed to obtain more accurate energies. The values of proton transfer barriers in the isolated, mono- and trihydrated tautomers of 2-aminothiazolidine-4-one (2AT) and 4-aminothiazolidine-2-one (4AT) were calculated for two different mechanisms of tautomerisation. In the absence of water, the process of proton transfer should not occur. Addition of water molecules decreases the barrier making the process faster, as the participation of two water molecules in a proton transfer reaction is more favorable than the participation of only one water molecule. To estimate the effect of the medium (water) on the relative stabilities of the tautomers of the studied compounds we applied the polarizable continuum model (PCM). (13)C NMR chemical shieldings were calculated using the GIAO approach at MP2/6-31+G(d,p) optimized geometries. HF and the DFT B3LYP functional with 6-31+G(d,p) basis set were employed. The quantum chemical results for the chemical shifts in gas phase and in polar solvents (water and DMSO) were compared with experimental data. TD DFT B3LYP/aug-cc-pVTZ calculations were performed to predict the absorption maxima of tautomers A and B of 2AT and 4AT.  相似文献   

14.
尿酸分子互变异构体平面构象的理论研究   总被引:4,自引:1,他引:4  
使用半经验量子化学中的AM1方法、从头计算Hartree-Fock理论(在3-21G*水平)和密度泛函理论中的B3LYP方法(使用6-31G(d)基组),研究了尿酸分子的所有35种互变异构体。计算结果表明,三羰基互变异构体是所有异构体中能量最低的,其次为单羟基异构体和双羟基异构体,而含有三羟基的互变异构体相对能量最高。随着羟基数的增加, C-N键的平均键长从1.395逐渐缩短到1.351,而CC键的平均键长基本保持不变(1.400~1.406)。  相似文献   

15.
2-(2-巯苯基)苯并噁唑分子内质子转移的理论研究   总被引:2,自引:0,他引:2  
在B3LYP/6-31G(d,p)水平上研究了2-(2-巯苯基)苯并噁唑气态中五种异构体(E1, E2, E3, E4和K)在气态中的稳定性及其在基态下的质子转移, 同时结合极化连续介质模型(PCM)研究了水、二甲亚砜、乙腈、乙醇、苯胺和环己烷等对2-(2-巯苯基)苯并噁唑溶剂化作用的影响. 研究结果表明, 醇式异构体E1为2-(2-巯苯基)苯并噁唑的优势构型; 在E1向K(酮式异构体)转变过程中, 存在一个较小的能垒; 当考虑零点振动能(ZPVE)后, 逆向能垒消失. 在溶液中, 随着溶剂极性的增强, 醇式异构体E1与K之间的反应平衡向K方向移动, 在非极性溶剂环己烷中, E1为优势构型, 而在强极性水溶液中, K为优势构型.  相似文献   

16.
A quantitative analysis method, combined experimental–computational approach (CECA), has been developed and applied for the detection of tautomer ratios of ethyl acetoacetate (eaa) in three organic solvents (acetonitrile, methanol, and chloroform). In order to obtain the relative concentrations of tautomers of eaa, IR intensities of both tautomers have been calculated at three different calculation levels (B3LYP/6-311++G(2d,2p), MP2/cc-pVDZ, and MP2/cc-pVTZ), augmented by the data obtained using basis set extrapolation technique. Experimental absorption bands were recorded at specific wavenumbers with FT-IR spectrophotometer and combined with calculated IR intensities in Lambert–Beer equation. Though the pure computational approach does not provide accurate values of the tautomers’ ratio, yet the results obtained using the CECA method are very close to the experimental data.  相似文献   

17.
利用密度泛函(DFT)B3LYP/6-311G(d,p)方法,水相计算采用自洽反应场(SCRF)中的Onsager模型,对气相和水相中可能存在的13种2,6-二巯基嘌呤互变异构体进行了全优化,并计算了各异构体的热力学参数、偶极矩及原子净电荷。计算结果表明,不论是气相还是水相,二硫酮DTP(1,3,7)是最稳定的异构体。溶剂化效应使各异构体的稳定性均增强,偶极矩大者其稳定性显著增大。溶剂化吉布斯自由能与异构体在两相中偶极矩之差存在相关性。二硫酮DTP(1,3,7)在水相中与致癌物BPDE进行亲核取代反应时,二硫酮DTP(1,3,7)中的S10原子优先进攻亲电试剂BPDE.  相似文献   

18.
Both amino-thiol N9H and amino-thiol N7H tautomeric forms of 6-thioguanine have been identified in approximately equal abundance in infrared studies of these molecules isolated in the hydrophobic environment of an argon matrix at 12 K. The relative concentrations of the amino-thiol N9H and amino-thiol N7H ([SH, N9H]/[SH, N7H] = K(N9H-N7H) = 1.00 +/- 0.02) are estimated from the observed relative infrared absorbances. From these relative concentrations, the difference in the Gibbs free energy of these two tautomers (deltaG500(N9H-N7H) = -0.012 +/- 0.005 kJ mol(-1) have been estimated. The infrared and Raman spectra of 6-thioguanine in solid state are also discussed in terms of hydrogen bonding and stacking interactions in the crystal which are not considered in the calculation. In an effort to interpret the experimental results, ab initio calculation of the infrared spectrum has been made for the amino-thione N7H tautomer at 3-21G level. Comparison with experimental spectra is of some help in the assignment of the infrared and Raman spectra for 6-thioguanine in the solid state.  相似文献   

19.
In this work, the experimental and theoretical vibrational spectra of 2-chloro-4-methylaniline (2Cl4MA, C7H8NCl) were studied. FT-IR and FT-Raman spectra of 2Cl4MA in the liquid phase have been recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock (HF) and density functional method (B3LYP) with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p) and 6-311G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) basis sets. The vibrational frequencies have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The DFT-B3LYP/6-311++G(d,p) calculations have been found more reliable than the ab initio HF/6-311++G(d,p) calculations for the vibrational study of 2Cl4MA. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of aniline and p-methylaniline molecules.  相似文献   

20.
FT-IR and (1)H, (13)C, DEPT, COSY, NOESY, HETCOR, INADEQUATE NMR spectra of 1-phenylpiperazine (pp) have been reported for the first time except for its (1)H NMR spectrum. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of pp (C(10)H(14)N(2)) have been calculated by means of the Hartree-Fock (HF) and Becke-Lee-Yang-Parr (BLYP) or Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G(d) and 6-31G(d,p) basis sets, respectively. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for predicting vibrational frequencies and NMR properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号