首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group 10 metal(II) complexes of H2tbu-salen (H2tbu-salen = N,N'-bis(3',5'-di-tert-butylsalicylidene)ethylenediamine) and H2tbu-salcn (H2tbu-salcn = N,N'-bis(3',5'-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) containing two 2,4-di(tert-butyl)phenol moieties, [Ni(tbu-salen)] (1a), [Ni(tbu-salcn)] (1b), [Pd(tbu-salen)] (2a), [Pd(tbu-salcn)] (2b), and [Pt(tbu-salen)] (3), were prepared and structurally characterized by X-ray diffraction, and the electronic structures of their one-electron-oxidized species were established by spectroscopic and electrochemical methods. All the complexes have a mononuclear structure with two phenolate oxygens coordinated in a very similar square-planar geometry. These complexes exhibited similar absorption spectra in CH2Cl2, indicating that they all have a similar structure in solution. Cyclic voltammograms of the complexes showed a quasi-reversible redox wave at E1/2 = 0.82-1.05 V (vs Ag/AgCl), corresponding to formation of the relatively stable one-electron-oxidized species. The electrochemically oxidized or Ce(IV)-oxidized species of 1a, 2a, and 3 displayed a first-order decay with a half-life of 83, 20, and 148 min at -20 degrees C, respectively. Ni(II) complexes 1a and 1b were converted to the phenoxyl radicals upon one-electron oxidation in CH2Cl2 above -80 degrees C and to the Ni(III)-phenolate species below -120 degrees C. The temperature-dependent conversion was reversible with the Ni(III)-phenolate ground state and was found to be a valence tautomerism governed by the solvent. One-electron-oxidized 1b was isolated as [Ni(tbu-salcn)]NO3 (4) having the Ni(II)-phenoxyl radical ground state. One-electron-oxidized species of the Pd(II) complexes 2a and 2b were different from those of the Ni(II) complexes, the Pd(II)-phenoxyl radical species being the ground state in CH2Cl2 in the range 5-300 K. The one-electron-oxidized form of 2b, [Pd(tbu-salcn)]NO3 (5), which was isolated as a dark green powder, was found to be a Pd(II)-phenoxyl radical complex. On the other hand, the ESR spectrum of the one-electron-oxidized species of Pt(II) complex 3 exhibited a temperature-independent large g anisotropy in CH2Cl2 below -80 degrees C, while its resonance Raman spectrum at -60 degrees C displayed nu8a of the phenoxyl radical band at 1600 cm-1. These results indicated that the ground state of the Pt(II)-phenoxyl radical species has a large distribution of the radical electron spin at the Pt center. One-electron oxidation of 3 gave [Pt(tbu-salen)]NO3 (6) as a solid, where the oxidation state of the Pt center was determined to be ca. +2.5 from the XPS and XANES measurements.  相似文献   

2.
Gao EQ  Tang JK  Liao DZ  Jiang ZH  Yan SP  Wang GL 《Inorganic chemistry》2001,40(13):3134-3140
Four oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(bispictn)](2)Cu(pba))(ClO(4))(2).2.5H(2)O (1), ([Ni(bispictn)](2)Cu(pbaOH))(ClO(4))(2).H(2)O (2), ([Ni(cth)](2)Cu(pba))(ClO(4))(2) (3), and ([Ni(cth)](2)Cu(opba))(ClO(4))(2).H(2)O (4) and a binuclear Ni(II)Cu(II) complex of formula [Cu(opba)Ni(cth)].CH(3)OH (5) have been synthesized and characterized by means of elemental analysis, IR, ESR, and electronic spectra, where pba = 1,3-propylenebis(oxamato), pbaOH = 2-hydroxyl-1,3-propylenebis(oxamato), opba = o-phenylenebis(oxamato), bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, and cth = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of 1, 3, and 5 have been determined. The structures of complexes 1 and 3 consist of trinuclear cations and perchlorate anions, and that of 5 consists of neutral binuclear molecules which are connected by hydrogen bonds and pi-pi interactions to produce a unique supramolecular "double" sheet. In the three complexes, the copper atom in a square-planar or axially elongated octahedral environment and the nickel atom in a distorted octahedral environment are bridged by the oxamato groups, with Cu.Ni separations between 5.29 and 5.33 A. The magnetic properties of all five complexes have been investigated. The chi(M)T versus T plots for 1-4 exhibit the minimum characteristic of antiferromagnetically coupled NiCuNi species with an irregular spin state structure and a spin-quartet ground state. The chi(M)T versus T plot for 5 is typical of an antiferromagnetically coupled NiCu pair with a spin-doublet ground state. The Ni(II)-Cu(II) isotropic interaction parameters for the five complexes were evaluated and are between 102 and 108 cm(-)(1) (H = -JS(Cu).S(Ni)).  相似文献   

3.
Photoexcitation of Ni(II)- and Ag(II)-porphyrins with a 10 ps pulse at 530 nm produces a new transient absorption. The transient species lifetimes were 250 ± 50 ps and 15 ± 8 ps for Ni- and Ag-porphyrins, respectively. It is shown that the triplet state is responsible for this absorption in Ag-porphyrin.  相似文献   

4.
Abstract—Picosecond absorption spectroscopy was used to determine the intramolecular energy relaxation processes occurring in Ni(II). Pd(II), Pt(II), and Zn(II) protoporphyrin IX dimethyl ester. Picosecond data on the rate of ground state repopulation and the kinetics of a transient intermediate made it possible to determine the lifetimes of the excited singlet state of Ni, Pd, and Zn porphyrins as 10±2ps, 19±3ps, and 2.6±0.5 ps, respectively, and<8 ps for Pt porphyrin. On the basis of these data. the nonfluorescent and nonphosphorescent property of Ni porphyrin can be interpreted in terms of internal conversion to a lower lying singlet d-d level which is not the case for the strongly phosphorescent Pd and Pt porphyrins.  相似文献   

5.
Two heterotrinuclear complexes, [Mn(II)(Ni(II)L)2].2CH3OH (where H3L = 1,1,1-tris(N-salicylideneaminomethyl)ethane) and [Fe(III)(Ni(II)L)2]NO3.C2H5OH, consisting of three face-sharing octahedra have been prepared; although these complexes have closely related structures and have the same 1-5/2-1 spin system, they show completely different magnetic interactions between the adjacent metal ions: ferromagnetic (Ni(II)-Mn(II)) and antiferromagnetic (Ni(II)-Fe(III)).  相似文献   

6.
The removal of Cu(II), Zn(II) and Ni(II) from solutions using biosorption in cork powder is described. The adsorption isotherms were determined, along with the effect of different variables, such as the solid–liquid ratio, temperature and pH on the removal efficiency of the metals. The potentiometric titration curve of the cork biomass was determined and some zeta-potential studies were carried out. The effect of the pre-treatment by Fisher esterification on the biosorption properties of cork is also presented. It was concluded that the adsorption of the heavy metals was favoured by an increase in pH. The degree of heavy metal removal is directly related to the concentration of cork biomass, and the maximum sorption capacity of cork biomass for Cu(II), Zn(II) and Ni(II) was 0.63, 0.76 and 0.34 meq./g, respectively. It is shown that ion exchange plays a more important role in the sorption of Cu(II) and Ni(II) on cork biomass than in the sorption of Zn(II). The pre-treatment by Fisher esterification confirmed the important role of the carboxylic groups in binding of Cu(II) and Ni(II) and showed that they are the only binding sites for Zn(II).  相似文献   

7.
A dinuclear Ni(II) complex involving tetrathiafulvalene (TTF) radicals as ligands has been prepared and characterized, [Ni2(mu-Cl)2(L*+)2(I3)4(I2)3.(H2O)2.(C4H8O)3 (1), L = 4,5-bis(2-pyridylmethylsulfanyl)-4',5'-ethylenedithiotetrathiafulvalene. There are two types of intramolecular magnetic exchange interactions, namely one ferromagnetic Ni(II)-Ni(II) and one antiferromagnetic Ni(II)-TTF*+. This study is new in the respect of revealing a magnetic exchange interaction between a TTF*+ radical and a paramagnetic transition metal ion. This is due to the fact of a direct binding of the transition metal ion to the skeleton of the TTF*+ radical.  相似文献   

8.
Dynamic mechanical thermoanalysis showed that polyethene, prepared under suitable polymerization conditions with the Brookhart‐type catalyst dibromo‐N,N′‐1,2‐acenaphthylenediylidenebis[2,6‐bis(1‐methylethyl)benzeneamine]Ni(II)/methylaluminoxane (MAO), behaved like an elastomer, even though no comonomer was added. A structural characterization showed that the polymers contained methyl to hexyl branches and some longer branches. The effect of the polymerization conditions on branching was investigated through variations in the pressure and temperature of the polymerization. Depending on the degree and type of branching, polyethene was either quite amorphous or highly crystalline with a high melting temperature. The solid‐state structure of the catalyst dibromo‐N,N′‐1,2‐acenaphthylenediylidenebis[2,6‐bis(1‐methylethyl)benzeneamine]Ni(II) consisted of two centrosymmetrically related monomeric moieties, where Ni atoms were bridged by two bromide ligands. The Ni atom was five‐coordinated, with a square pyramidal coordination polyhedron. The sixth coordination site of the octahedral geometry was effectively blocked by the isopropyl groups of the 2,6‐C6H3(i‐Pr) substituents of the diimine ligand. In solution in the presence of MAO, the longer bridging Ni? Br bonds broke, and the complex dissociated to a monomeric species. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1426–1434, 2001  相似文献   

9.
Multi-frequency EPR spectroscopy on 61Ni-labelled samples of [Ni2(L)]3+ confirms extensive charge-delocalisation between the Ni(III) centre and thiolate donors in the Ni(II)Ni(III) complex.  相似文献   

10.
The present study reports removal of As(V) by adsorption onto laboratory-prepared pure and Cu(II)-, Ni(II)-, and Co(II)-doped goethite samples. The X-ray diffraction patterns showed only goethite as the crystalline phase. Doping of ions in the goethite matrix resulted in shift of d-values. Various parameters chosen for adsorption were nature of adsorbent, percentage of doped cations in goethite matrix, contact time, solution pH, and percentage of adsorbate. It was observed that the pH(pzc) of the goethite surface depended on the nature and concentration of metal ions. The surface area as well as the loading capacity increased with the increase of dopant percentage in goethite matrix. A maximum loading capacity of 19.55 mg/g was observed for 2.7% Cu(II)-doped goethite. The adsorption kinetics for Ni(II), Co(II) and for undoped goethite attained a quasi-equilibrium state after 30 min with almost negligible adsorption beyond this time. In case of Cu(II)-doped goethite samples, the quasi-equilibrium state for As(V) adsorption was observed after 60 min. At each studied pH condition, it was observed that the percentage of adsorption of As(V) decreased in the order Cu(II)-doped goethite > or = Ni(II)-doped goethite > Co(II)-doped goethite > pure goethite. The adsorption followed: Langmuir isotherm, indicating monolayer formation.  相似文献   

11.
Cyclic voltammetry (CV) and square-wave voltammetry (SWV) techniques have been used to study the binary complexes of Co(II), Ni(II) and Cu(II) with sulfamethazine (SMZ) at a static mercury drop electrode (SMDE) in 0.04 M Britton-Robinson (B-R) buffer. SMZ gave three peaks at 0.01, −1.32 and −1.55 V. Cu(II)-SMZ complex was recognized by a cathodic peak at −0.38 V. Ni(II)-SMZ complex was reduced at more positive potential (−0.77 V) than that of the hydrated Ni(II) ions (−1.08 V). Co(II)-SMZ complex is investigated at pH 7 and 8. The Co(II) complex at pH 7 is appeared as a shoulder at −1.19 V, whereas this peak becomes a well-separated form at pH 8. The study indicated that the SMZ serves as a catalyst in the reduction of Co(II) and Ni(II) ions. From electronic spectra data of the complexes, their stoichiometries of 1: 2 (metal-ligand) in aqueous medium are determined. The stability constants of the complexes are in agreement with the Irwing-Williams series (Co < Ni < Cu).  相似文献   

12.
13.
Comparison was made for the structural, IR spectral, and thermoanalytical characteristics of normal [M1(H2O)2(C4H2O4)](H2O) (M1 = Co(II) and Ni(II)) and acid maleates [M2(H2O)4(C4H3O4)2] (M2 = Mn(II), Fe(II), Co(II) and Ni(II)). Only structures of acid maleates contain intramolecular asymmetric hydrogen bond whose asymmetry increases in the series of transition metal salts. Thermal decomposition of Co(II), Ni(II) normal maleates, and Mn(II), Fe(II), Co(II), Ni(II) acid maleates proceeds in three stages. Onset decomposition temperatures for the first and second stages decreases in the series of normal maleates Co(II) ≥ Ni(II) and increases in the series of acid maleates Fe(II) < Co(II) < Ni(II) ≈ Mn(II). Onset temperature of the third stage decreases in the series of both normal maleates Co(II) > Ni(II) and acid maleates Mn(II) > Fe(II) > Co(II) > Ni(II).  相似文献   

14.
The water soluble Ni(II) complexes of the cyclam derivatives with 1,3-benzodioxole and 1,2,3-trimethoxybenzene display the fluorescent emission typical of the covalently linked fluorophores, which results from a charge transfer excited state. On oxidation to Ni(III), the fluorescence is completely quenched due to the occurrence of an electron transfer (eT) process from the excited fluorogenic fragment Fl to the oxidized metal. Thus, fluorescence can be switched off/on at will, for several cycles, by consecutively oxidizing and reducing the metal center, in controlled potential electrolysis experiments both in acetonitrile and in aqueous 0.1 M HClO4. Occurrence of an eT process from Fl to Ni(III) ultimately depends upon the easy oxidation of Fl to Fl+, whereas failure of the occurrence of an eT process from Ni(II) to Fl has to be ascribed to the particular resistance of Fl fragments to the reduction.  相似文献   

15.
16.
Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 2,5-dichlorobenzoates were prepared and their compositions and solubilities in water at 295 K were determined. The IR spectra and X-ray diffractograms of the obtained complexes were recorded. The complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were obtained as solids with a 1:2 molar ratio of metal to organic ligand and different degrees of hydration. When heated at a heating rate of 10 K min-1, the hydrated complexes lose some (Co, Zn) or all (Ni, Cu, Cd) of the crystallization water molecules and then decompose to oxide MO (Co, Ni) or gaseous products (Cu, Zn, Cd). When heated at a heating rate of 5 K min-1, the complexes of Ni(II) and Cu(II) lose some (Ni) or all (Cu) of the crystallization water molecules and then decompose directly to MO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The linear-type heterometallic tetramers, [Mn(III)(2)(5-MeOsaltmen)(2)M(II)(2)(L)(2)](CF(3)SO(3))(2) x 2H(2)O (MII = Cu, 1a; Ni, 2a), where 5-MeOsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene) bis(5-methoxysalicylideneiminate), and H(2)L = 3-{2-[(2-hydroxy-benzylidene)-amino]-2-methyl-propylimino}-butan-2-one oxime, have been synthesized and characterized from structural and magnetic points of view. These two compounds are isostructural and crystallize in the same monoclinic P2(1)/n space group. The structure has a [M(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-M(II)] skeleton, where -NO- is a linking oximato group derived from the non-symmetrical Schiff-base complex [M(II)(L)] and -(O)(2)- is a biphenolato bridge in the out-of-plane [Mn(2)(5-MeOsaltmen)(2)](2+) dimer. The solvent-free compounds, 1b and 2b, have also been prepared by drying of the parent compounds, 1a and 2a, respectively, at 100 degrees C under dried nitrogen. After this treatment, the crystallinity is preserved, and 1b and 2b crystallize in a monoclinic P2(1)/c space group without significant changes in their structures in comparison to 1a and 2a. Magnetic measurements on 1a and 1b revealed antiferromagnetic Mn(III)---Cu(II) interactions via the oximato group and weak ferromagnetic Mn(III)---Mn(III) interactions via the biphenolato bridge leading to an S(T) = 3 ground state. On the other hand, the diamagnetic nature of the square planar Ni(II) center generates an S(T) = 4 ground state for 2a and 2b. At low temperature, these solvated (a) and desolvated (b) compounds display single-molecule magnet behavior modulated by their spin ground state.  相似文献   

18.
Reactions between nickel(II) and copper(II) salts [M(L) n ](ClO4)2 [L: 2-(pyrazole-1-ylmethyl)pyridine; n = 3 for Ni(II) and n = 2 for Ni(II) and Cu(II)] and LiTCNQ or mixture of LiTCNQ/TCNQ and Et3NH(TCNQ)2 yielded [Ni(L)3](TCNQ)2 · H2O, [Ni(L)2(TCNQ)2], [Ni(L)3](TCNQ)3, [Ni(L)2(TCNQ)3], and [Cu(L)2(TCNQ)3] · 3H2O. These complexes were characterized by infrared, electronic absorption, variable temperature magnetic moments and electron paramagnetic studies. Magnetic moments increase with increase in temperature attributed to contribution from TCNQ, which has also been examined by electron paramagnetic resonance.  相似文献   

19.
The synergistic effect of Ni(II) and Co(II) on the sulfite induced autoxidation of Cu(II)/tetraglycine was investigated spectrophotometrically at 25.0 degrees C, pH = 9.0, 1 x 10(-5) mol dm(-3) < or = [S(IV)] < or = 8 x 10(-5) mol dm(-3), [Cu(II)]= 1 x 10(-3) mol dm(-3), 1 x 10(-6) mol dm(-3) < or = [Ni(II)] or [Co(II)] < or = 1 x 10(-4) mol dm(-3), [O2] approximately 2.5 x 10(-4) mol dm(-3), and 0.1 mol dm(-3) ionic strength. In the absence of added nickel(II) or cobalt(II), the kinetic traces of Cu(III)G4 formation show a large induction period (about 3 h). The addition of trace amounts of Ni(II) or Co(II) increases the reaction rate significantly and the induction period drastically decreases (less than 0.5 s). The effectiveness of Cu(III)G4 formation becomes much higher. The metal ion in the trivalent oxidation state rapidly oxidizes SO3(2-) to SO3*-, which reacts with oxygen to produce SO5*-. The strongly generated oxidants oxidize Cu(II)G4 to Cu(III).  相似文献   

20.
合成了O-(硫杂蒽酮-[2]-基)-氧乙酸镍(II)配合物。通过元素分析,IR, DTA-TG谱对其结构进行了表征。研究表明:配体羧羰基脱质子后与镍离子配位,配合物中含有一定量的配位水。同时以紫外可见光谱、荧光光谱、园二色谱,电化学方法和凝胶电泳方法研究了该配合物与DNA的作用。结果表明,该配合物能在生理条件下比配体和金属离子更有效地切割质粒DNA,自由基捕捉剂的加入不影响配合物的切割活性。该配合物使DNA溶液的紫外吸收强度和园二色吸收强度降低,DNA的存在可使该配合物的氧化还原活性降低。与溴化乙锭和DNA的竞争反应说明,该配合物主要以嵌入方式与DNA结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号