首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shift toward online communication in all realms, from print newspapers to broadcast television, has implications for how the general public consumes information about nanotechnology. The goal of this study is threefold: to investigate who is using online sources for information and news about science and nanotechnology, to examine what the general public is searching for online with regards to nanotechnology, and to analyze what they find in online content of nanotechnology. Using survey data, we find those who report the Internet as their primary source of science and technology news are diverse in age, more knowledgeable about science and nanotechnology, highly educated, male, and more diverse racially than users of other media. In a comparison of demographic data on actual visits by online users to general news and science Web sites, science sites attracted more male, non-white users from the Western region of the United States than news sites did. News sites, on the other hand, attracted those with a slightly higher level of education. Our analysis of published estimates of keyword searches on nanotechnology reveals people are turning to the Internet to search for keyword searches related to the future, health, and applications of nanotechnology. A content analysis of online content reveals health content dominates overall. Comparisons of content in different types of sites—blogs, government, and general sites—are conducted.  相似文献   

2.
This study examines how familiarity with an issue—nanotechnology—moderates the effect of exposure to science information on how people process mediated messages about a complex issue. In an online experiment, we provide a nationally representative sample three definitions of nanotechnology (technical, technical applications, and technical risk/benefit definitions). We then ask them to read an article about the topic. We find significant interactions between perceived nano-familiarity and the definition received in terms of how respondents perceive favorable information conveyed in the stimulus. People less familiar with nanotechnology were more significantly affected by the type of definition they received.  相似文献   

3.
4.
5.
6.
Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4?C5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.  相似文献   

7.
Nanomedicine is a relatively new field of science and technology. It looks sometimes ill defined and interpretations of that term may vary, especially between Europe and the United States.By interacting with biological molecules, therefore at nanoscale, nanotechnology opens up a vast field of research and application. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the extracellular medium and inside the human cells. Operating at nanoscale allows to exploit physical properties different from those observed at microscale such as the volume/surface ratio.The investigated diagnostic applications can be considered for in vitro as well as for in vivo diagnosis. In vitro, the synthesised particles and manipulation or detection devices allow for the recognition, capture, and concentration of biomolecules. In vivo, the synthetic molecular assemblies are mainly designed as a contrast agent for imaging.A second area exhibiting a strong development is “nanodrugs” where nanoparticles are designed for targeted drug delivery. The use of such carriers improves the drug biodistribution, targeting active molecules to diseased tissues while protecting healthy tissue.A third area of application is regenerative medicine where nanotechnology allows developing biocompatible materials which support growth of cells used in cell therapy.The application of nanotechnology to medicine raises new issues because of new uses they allow, for instance: Is the power of these new diagnostics manageable by the medical profession? What means treating a patient without any clinical signs? Nanomedicine can contribute to the development of a personalised medicine both for diagnosis and therapy.There exists in many countries existing regulatory frameworks addressing the basic rules of safety and effectiveness of nanotechnology based medicine, whether molecular assemblies or medical devices. However, there is a need to clarify or to modify these regulations which mobilise many experts.France is a country where the medical development of nanotechnology is significant, like Germany, the United Kingdom or Spain, as regards the European Union. There is an active scientific community and industrial partners of all sizes, even if the technology transfer to industry is not as effective as in North America.  相似文献   

8.
This article investigates the development of nanotechnology in Latin America with a particular focus on Argentina, Brazil, Chile, and Uruguay. Based on data for nanotechnology research publications and patents and suggesting a framework for analyzing the development of R&D networks, we identify three potential strategies of nanotechnology research collaboration. Then, we seek to identify the balance of emphasis upon each of the three strategies by mapping the current research profile of those four countries. In general, we find that they are implementing policies and programs to develop nanotechnologies but differ in their collaboration strategies, institutional involvement, and level of development. On the other hand, we find that they coincide in having a modest industry participation in research and a low level of commercialization of nanotechnologies.
Philip ShapiraEmail:
  相似文献   

9.
The problem of ensuring uniformity of measurements in nanotechnology is discussed. A functional block diagram is developed for length unit size transfer from the primary length standard (meter) to the nanometric range. The first six Russian national standards are presented, which ensure this transfer using scanning electron and atomic force microscopes.  相似文献   

10.
Nanoscale research in Venezuela is briefly reviewed, with emphasis on research groups, research lines, and institutions involved. A summary exploration is made of international collaboration through scientific co-authorship, as well of the efforts to build nano capacities, available infrastructure, relationships to the productive sector and a weak presence in Venezuelan public policies, although there is some expectation that the situation may soon begin to change.  相似文献   

11.
This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications.  相似文献   

12.
We consider apertureless near-field optics that provides subwavelength resolution. We study the enhancement of the electromagnetic field near nanospheres and under the tip of a scanning probe microscope using the finite difference time-domain (FDTD) method. We discuss the mechanisms of field enhancement connected with the system geometry (“lightning rod effect”) and resonance excitation of local plasmon eigenmodes for different materials of the tip and various geometrical parameters of the system. We describe the possible applications in nano-optics and nanotechnology. We present the experimental achievements in apertureless near-field nanolithography.  相似文献   

13.
While several studies on the public opinion of nanotechnology have pointed to a rather enthusiastic U.S. public, the public uptake of nanotechnology in Europe is more contained. The results of the Swiss publifocus on nanotechnology reveal a pragmatic attitude of citizens toward the emerging technologies, thus confirming what has been identified as a “balanced approach” in the NanoJury UK.
Regula Valérie BurriEmail:
  相似文献   

14.
In order to observe and estimate the flow of fluid in three-dimensional space, the pulsed Doppler method has been used widely. However, the velocity information acquired is only the velocity component in the beam direction of the wave even if an observation plane is formed by beam scanning. Accordingly, it is difficult to know the velocity distribution in the observation plane in tree-dimensional flow. In this paper, the new idea for processing the velocity distribution in the beam direction on an observation plane for transposing to flux distribution (flow function method) has been introduced. Further, the flow in an observation domain is divided into two kinds of flows, viz., the base flow which indicates the directivity of the flow in the observation domain and the vortex which is considered a two-dimensional flow. By applying the theory of a stream function to the two-dimensional flow, and by using the physical feature of a streamline to the base flow, the velocity component v which intersects perpendicularly to the beam direction is estimated. The flow velocity distribution in a scanning plane (observation plane) can be known from these two components of velocity, viz., beam direction componentu and perpendicular component to the beam directionv. The principle was explained by an example of the blood flow measurement in normal and abnormal heart chamber, by the ultrasonic Doppler method.  相似文献   

15.
A J Libchaber 《Pramana》1999,53(1):85-91
The developments during the century in the physical understanding of biological activity are briefly discussed.  相似文献   

16.
纳米生物技术及其应用   总被引:3,自引:0,他引:3  
赵强  庞小峰  张怀武 《物理》2006,35(4):299-303
纳米技术的发展使人们可以观测到纳米量级的介观世界,可以直观地了解生物分子的形态和分子间的相互作用,甚至可以操纵生物大分子,得到不同结构的新的生物分子.运用纳米技术制作的纳米器件可以用作疾病诊断与治疗.由纳米量级的超微粒构成的纳米生物材料具有良好生物相容性和一些独特的纳米效应,主要表现为小尺寸效应和表面或界面效应.纳米生物材料与相同组成的微米材料存在非常显著的差异,体现出许多优异的性能和全新的功能.纳米微粒在癌症的监测、治疗,细胞和蛋白质的分离,基因治疗,靶向和缓释控药物等中都有着广泛的应用.  相似文献   

17.
赵强  庞小峰  张怀武 《物理》2006,35(04):299-303
纳米技术的发展使人们可以观测到纳米量级的介观世界,可以直观地了解生物分子的形态和分子间的相互作用,甚至可以操纵生物大分子,得到不同结构的新的生物分子.运用纳米技术制作的纳米器件可以用作疾病诊断与治疗.由纳米量级的超微粒构成的纳米生物材料具有良好生物相容性和一些独特的纳米效应,主要表现为小尺寸效应和表面或界面效应.纳米生物材料与相同组成的微米材料存在非常显著的差异,体现出许多优异的性能和全新的功能.纳米微粒在癌症的监测、治疗,细胞和蛋白质的分离,基因治疗,靶向和缓释控药物等中都有着广泛的应用.  相似文献   

18.
In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative Nanotechnologie erobert Märkte (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germanys well-developed and internationally competitive research in science and technology to tap the potential of Germanys important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society.  相似文献   

19.
Despite all predictions and promises, nanotechnology still seems to be more of an emerging science than a fully fledged revolution. More often than not, the patent system is blamed for this, supposedly tangling up nanotechnology in an impenetrable thicket of exclusionary rights instead of setting it free. Drawing on methods of complex network analysis, we provide empirical evidence suggesting that, at least in Europe, there is actually no patent thicket present in nanotechnology. Yet, the situation appears to be different in the USA.  相似文献   

20.
Refining search terms for nanotechnology   总被引:5,自引:3,他引:2  
The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology’s research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as “nano”) given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed.
Jan YoutieEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号