首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fluid Phase Equilibria》1996,118(2):201-219
A new cubic equation of state (EOS) was developed in this study for vapor-liquid equilibrium (VLE) calculations of nonpolar fluids. The repulsive term of this EOS reexpressed the results of Walsh and Gubbins (1990) from their modified thermodynamic perturbation theory of polymerization into a simple form in which a non-spherical parameter was employed to account for the different shapes of molecules. The repulsive compressibility factors calculated from this EOS agree well with the molecular simulation data for various kinds of hard bodies ranging from a single hard sphere to tangent or fused long chain molecules. A simple attractive term was then coupled with the repulsive to complete the EOS in a cubic form. Equation parameters were determined for a diversity of nonpolar real fluids. These parameters were expressed in generalized forms for engineering computations. Satisfactory results from this EOS on the saturated properties of pure nonpolar fluids were obtained. This EOS was also extended to calculate the VLE of nonpolar fluid mixtures. The results are again satisfactory over wide ranges of temperature and pressure.  相似文献   

2.
A new three-parameter cubic equation of state is presented by combination of a modified attractive term and van der Waals repulsive expression. Also a new alpha function for the attractive parameter of the new EOS is proposed. The new coefficients of alpha function and the other parameters of the attractive term are adjusted using the data of the saturated vapor pressure and liquid density of almost 60 pure compounds including heavy hydrocarbons. The new EOS is adopted for prediction of the various thermophysical properties of pure compounds such as saturated and supercritical volume, enthalpy of vaporization, compressibility factor, heat capacity and sound velocity. Following successful application of the new EOS for the pure components, using vdW one-fluid mixing rules, the new EOSs are applied to prediction of the bubble pressure and vapor mole fraction of the several binary and ternary mixtures. The accuracy of the new EOS for phase equilibrium calculation is demonstrated by comparison of the results of the present EOSs with the PT, PR, GPR and SRK cubic EOSs.  相似文献   

3.
《Fluid Phase Equilibria》2007,255(1):24-30
In this work, a new model based on molecular thermodynamic was presented to correlate the surface tension of pure polar liquids. This model was developed based on the Davis theory. According to this theory, the surface tension is defined as a function of radial distribution function (RDF) and potential function (PF) as well. The proposed model includes three additive terms; hard sphere, dispersion and polar interactions. The RDF of Kolafa equation of state and Dirac delta function as a PF were used for hard sphere interaction. The RDF expression of Xu and Hu was considered for both dispersion and polar interactions. The presented model has two adjustable parameters, size and energy, which were obtained by optimization of an objective function for each pure fluid. This proposed approach was used for 19 pure polar fluids divided into 6 groups; organic acids, alcohols, ketones, ethers, aldehydes, and water. The average absolute deviation percent (AAD%) obtained for 19 fluids are 0.74. Also the surface tension of these 19 fluids was calculated by the use of SRK EOS and Sugden empirical formula in two cases. In case 1, Sugden's Parachor was calculated from Hugill and van Welsenes correlation and in case 2, it was obtained by optimization of an objective function for each component. The values of AAD% are 43.544 and 2.281 for cases 1 and 2, respectively. These results show the new model, which includes two adjustable parameters, can correlate the surface tension of the pure polar liquids with a high accuracy.  相似文献   

4.
This study demonstrates that any temperature dependency introduced in the term describing the inter-molecular repulsive forces of analytical EOS models leads to prediction of the infinite value for the isochoric heat capacity at the density limit conditions. The temperature-dependent hard sphere diameters and co-volumes necessarily result in the non-physical negative infinite values of this property at the infinite pressure, which in turn leads to the non-physical predictions of other properties, such as the sound velocities. In addition, this study demonstrates that the inconsistency existing at the imaginary state of infinite pressure may have a very strong negative impact on predicting the data of real fluids at the experimentally available pressures. Therefore making the repulsion compressibility factor temperature-dependent seems highly non-recommended.  相似文献   

5.
A new method to predict concentration dependence of collective diffusion coefficient of bovine serum albumin (BSA) in aqueous electrolyte solution is developed based on the generalized Stokes-Einstein equation which relates the diffusion coefficient to the osmotic pressure. The concentration dependence of osmotic pressure is evaluated using the solution of the mean spherical approximation for the two-Yukawa model fluid. The two empirical correlations of sedimentation coefficient are tested in this work. One is for a disordered suspension of hard spheres, and another is for an ordered suspension of hard spheres. The concentration dependence of the collective diffusion coefficient of BSA under different solution conditions, such as pH and ionic strength is predicted. From the comparison between the predicted and experimental values we found that the sedimentation coefficient for the disordered suspension of hard spheres is more suitable for the prediction of the collective diffusion coefficients of charged BSA in aqueous electrolyte solution. The theoretical predictions from the hard-core two-Yukawa model coupled with the sedimentation coefficient for a suspension of hard spheres are in good agreement with available experimental data, while the hard sphere model is unable to describe the behavior of diffusion due to its neglect of the double-layer repulsive charge-charge interaction between BSA molecules.  相似文献   

6.
《Fluid Phase Equilibria》2004,217(2):257-262
In a recent work [Fluid Phase Equilib. 194–197 (2002) 401], Kedge and Trebble presented a non-cubic equation of state (EOS) including a near-critical correction term. The evaluation of that equation was limited initially to matching fluid properties of methane. In this work, we investigate the impact of incorporating a Carnahan–Starling (CS) repulsive term [J. Chem. Phys. 51 (2) (1969) 635] into the non-cubic equation. The CS term improves the fit of the critical isotherm and it is shown to improve the fit of the entire PVT space. Anomalies in the fit of temperature dependence in the EOS parameters in the near-critical region are also reduced. We also demonstrate in this work how the new correction term serves to flatten the top of the vapor–liquid coexistence curve. The new term is compared to the exponential term in Soave’s modification of the BWR equation (SBWR) [Ind. Eng. Chem. Res. 34 (1995) 3981] which achieves a similar effect in a slightly different way.  相似文献   

7.
《Fluid Phase Equilibria》2004,215(1):91-96
In a recent work [Fluid Phase Equilib. 194–197 (2002) 401], Kedge and Trebble presented a non-cubic equation of state (EOS) including a near-critical correction term. The evaluation of that equation was limited initially to matching fluid properties of methane. In this work, we investigate the impact of incorporating a Carnahan–Starling (CS) repulsive term [J. Chem. Phys. 51 (2) (1969) 635] into the non-cubic equation. The CS term improves the fit of the critical isotherm and it is shown to improve the fit of the entire PVT space. Anomalies in the fit of temperature dependence in the EOS parameters in the near-critical region are also reduced. We also demonstrate in this work how the new correction term serves to flatten the top of the vapor–liquid coexistence curve. The new term is compared to the exponential term in Soave’s modification of the BWR equation (SBWR) [Ind. Eng. Chem. Res. 34 (1995) 3981] which achieves a similar effect in a slightly different way.  相似文献   

8.
By modeling the ring-like molecule as a pearl necklace of freely jointed hard sphere, we develop a new equation of state (EOS) for the ring-like fluids on the basis of generalized Flory-Huggins (GFH) theory. Before proposing the new EOS of the ring-like fluids, we first modify the generalized Flory-Huggins theory for the chain fluids by incorporating a function related to the packing fraction into the insertion probability. The results indicate that the modified GFH EOS can predict the compressibility factors more accurately than the GFH EOS, especially for the intermediate and high packing fractions (η ≥ 0.157). Subsequently, the modified GFH theory-based EOS for the ring-like fluids is proposed. Compared to the Monte Carlo data of 3-mer, 4-mer, 5-mer, 6-mer, 16-mer, and 32-mer ring-like fluids, our EOS exhibits the best prediction among four EOSs for the compressibility factors at intermediate and high packing fractions (η ≥ 0.157), although our EOS also shows a slight underestimation for the compressibility factors at low packing fractions. In summary, this is the first report on the generalized Flory-Huggins theory-based EOS for the ring-like fluids. It is expected that the same strategy can be applied to these fluids with more complex architectures.  相似文献   

9.
基于化学缔合统计理论的链状流体状态方程   总被引:1,自引:0,他引:1  
基于化学缔合统计理论的链状流体状态方程(EOS)能够反映实际分子的形状、链节成链、缔合等具体信息,在实际流体热力学性质计算中有着广泛应用.一般的链状流体EOS仅考虑相邻链节间的相关性,我们则借助统计力学和计算机模拟结果在模型中纳入了相间链节间的相关性,获得的硬球链流体(HSCF)模型能够更好地预测模型流体的压缩因子和第二维里系数.以HSCF为参考,引入方阱色散微扰项获得了实际方阱链流体(SWCF)EOS;结合根据黏滞球模型导得的缔合项,进一步构建了缔合流体EOS.最近,我们根据微扰理论和积分方程方法又开发了一新的变阱宽方阱链流体(SWCF-VR)模型.SWCF和SWCF-VREOSs可很好地用于计算小分子、聚合物、离子液体等纯流体及混合物的相行为、热焓、表面张力、黏度等热力学及传递性质,显示了模型良好的工程应用价值.本文就本课题组多年来在自由空间范畴内基于化学缔合统计理论开发链状流体EOS及其实际应用作系统的总结.  相似文献   

10.
《Fluid Phase Equilibria》1998,152(2):219-233
A concept based on the thermodynamic perturbation theory for a `simple fluid' has been applied to the attractive term of a van-der-Waals type equation of state (EOS) to derive a simple mixing rule for the a parameter. The new mixing rule is a small correction to the original one-fluid approximation to account for the influence of particles of j-type on the correlation function of ii-type in a mixture consisting of particles of i and j types. The importance of the correction has been shown by comparison of the calculated results for binary mixtures of Lennard–Jones fluids with the data obtained by numerical method (Monte-Carlo simulation). The new mixing rules can be considered as a flexible generalization of the conventional mixing rules and can be reduced to the original v-d-W mixing rules by defaulting the extra binary parameters to zero. In this way the binary parameters already available in the literature for many systems can be used without any additional regression work. Extension of the new mixing rules to a multicomponent system do not suffer from `Michelsen–Kistenmacher syndrome' and provide the correct limit for the composition dependence of second virial coefficients. Their applicability has been illustrated by various examples of vapor–liquid and liquid–liquid equilibria using a modified Patel–Teja EOS. The new mixing rules can be applied to any EOS of van-der-Waals type, i.e., EOS containing two terms which reflect the contributions of repulsive and attractive intermolecular forces.  相似文献   

11.
《Fluid Phase Equilibria》2005,233(1):110-121
A new equation of state based on the Statistical Associating Fluid Theory (SAFT) is presented to study the phase behavior of associating and non-associating fluids. In the new equation of state, the hard sphere contribution to compressibility factor of the simplified version of the SAFT (SSAFT) is replaced with that proposed by Ghotbi and Vera. The Ghotbi–Vera SSAFT (GV-SSAFT) was also extended to study the phase behavior of associating and non-associating mixtures. The GV-SSAFT like the SSAFT equation of state has three adjustable segment parameters for non-associating fluids and five parameters for associating fluids. The experimental data of liquid densities and vapor pressures for pure fluids studied in this work were used to obtain the best values for the parameters of the GV-SSAFT. The results obtained from the GV-SSAFT for liquid densities and vapor pressures of pure associating and non-associating fluids were compared with those obtained from the SSAFT equation of state. The results showed that the GV-SSAFT similar to the SSAFT can accurately correlate the experimental data of liquid density and vapor pressure for systems studied. On the other hand the results obtained from two SAFT-based equations of state are almost identical. In order to show capability of the GV-SSAFT and SSAFT equations of state, they were used to directly calculate heat of vaporization for a number of pure associating and non-associating fluids. Slightly better results for heat of vaporization comparing to the experimental data were obtained from the GV-SSAFT EOS than those obtained from the SSAFT. The GV-SSAFT was also used to study the VLE phase behavior for a number of binary associating and non-associating mixtures. The results also showed that the GV-SSAFT can be successfully used to study the phase behavior of mixtures studied in this work.  相似文献   

12.
Explicit exact analytic expressions are obtained in the form of infinite series for the potential distribution and the potential energy of the electrostatic interaction for the system of two dissimilar spheres in an electrolyte solution on the basis of the linearized Poisson—Boltzmann equation without recourse to Derjaguin's approximation. The leading term of the expression for the interaction energy (the zeroth order approximation) corresponds to the interaction energy that would be obtained if both spheres were ion-penetrable spheres (“soft” spheres). This term is a screened Coulomb interaction due to a simple linear superposition of the unperturbed potentials of the respective spheres, which is proportional to the product of their unperturbed surface potentials. The first-order approximation corresponds to the interaction energy that would be obtained if either sphere were a soft particle (the other being hard). The first-order correction term consists of two sub-terms, each of which is proportional to the square of the unperturbed surface potential of either sphere and does not depend on the unperturbed surface potential of the other sphere, can be interpreted as the interaction between the soft sphere and its image with respect to the hard sphere. This image interaction is attractive if the surface potential of the hard sphere is constant and repulsive if the surface charge density of the sphere is constant. It is shown that Derjaguin's method as well as its extension to the interaction of unequal spheres by Hogg, Healy and Fuerstenau (HHF) is quite a good approximation.  相似文献   

13.
In 1873 van der Waals1 proposed a two-parameter cubic equation of state (EOS), which provides a rather clear physical picture of molecular interactions in real fluids. Because of its simplicity, it soon was widely used. Other famous equations of state, such as PR2, Soave3, have been proposed since then. But all these equations are not accurate enough when applied to liquid phase.The trend of modeling the properties of fluids is that a single equation of state can be applied to both vapor an…  相似文献   

14.
In this research, we use the original Peng-Robinson (PR) equation of state (EOS) for pure fluids and develop a crossover cubic equation of state which incorporates the scaling laws asymptotically close to the critical point and it is transformed into the original cubic equation of state far away from the critical point. The modified EOS is transformed to ideal gas EOS in the limit of zero density. A new formulation for the crossover function is introduced in this work. The new crossover function ensures more accurate change from the singular behavior of fluids inside the regular classical behavior outside the critical region. The crossover PR (CPR) EOS is applied to describe thermodynamic properties of pure fluids (normal alkanes from methane to n-hexane, carbon dioxide, hydrogen sulfide and R125). It is shown that over wide ranges of state, the CPR EOS yields the thermodynamic properties of fluids with much more accuracy than the original PR EOS. The CPR EOS is then used for mixtures by introducing mixing rules for the pure component parameters. Higher accuracy is observed in comparison with the classical PR EOS in the mixture critical region.  相似文献   

15.
《Fluid Phase Equilibria》1996,118(1):27-59
Chemical potential of an associating component is derived from cubic equation of state. It is separated in the rigorous way into effective physical part and excess of chemical contribution. The both parts of the chemical potential are given in form of explicit expressions, which does not need any cumbersome integration or differentiation. The simple expression for association equilibrium is derived. It depends only on repulsive term of EOS. The proposed method is applied for correlating VLE equilibria in binary mixtures and for prediction of pressure in ternary mixtures on basis of the constituent binary VLE data.  相似文献   

16.
A new equation of state (EOS) for square-well chain molecules and their mixtures with variable well-width range (SWCF-VR-EOS) has been developed based on the sticky-point model for chemical association. Two important modifications have been made. Firstly, a new dispersion contribution to the Helmholtz function of monomers due to square-well potential with variable well-width range of 1.1 ≤ λ ≤ 3 was established by combining the second-order perturbation theory and Chiew's PY2 approximation of the integral equation. Secondly, the contribution of chain formation to the Helmholtz function is divided into two parts: One is from the hard sphere, and the other is from the effect of square-well potential described via the nearest-neighbor and next-to-nearest-neighbor residual cavity correlation functions (CCFs). The predicted compressibility factors and vapor–liquid coexistence curves for square-well fluids as well as for their mixtures are in good agreement with simulations. The new EOS has been applied to real non-associating fluids and the corresponding mixtures by adopting one-fluid mixing rule. The pVT and vapor–liquid equilibria (VLE) can be correlated satisfactorily. The model parameters for some homologous compounds are found to be linear with the molar mass indicating that the pVT and VLE of those homologous compounds can be predicted even if no accurate data are available.  相似文献   

17.
定标粒子理论计算非水溶液的盐效应常数   总被引:1,自引:0,他引:1  
本文应用定标粒子理论计算了非电解质溶质在盐(NaI、或KI)和环丁砜组成的非水电解质溶液中溶解度的盐效应常数。硬球作用项采用Masterton-Lee的方法。软球作用项采用胡英等的径向分布函数处理方法, 并考虑进了偶极-偶极、偶极-诱导偶极、电荷-偶极和电荷-诱导偶极等相互作用。分子的硬球直径σ和能量参数∈/k由经验方程计算。由理论值和实验结果比较得出: 当σ_2取0.563 nm、离子半径取电子密度标度时, 理论值与实验值符合得较好。  相似文献   

18.
The purpose of this short paper is to present an alternative fundamental measure theory (FMT) for hard sphere mixtures. Keeping the main features of the original Rosenfeld's FMT [Phys. Rev. Lett. 63, 980 (1989)] and using the dimensional and the low-density limit conditions a new functional is derived incorporating Boublik's multicomponent extension [Mol. Phys. 59, 371 (1986)] of highly accurate Kolafa's equation of state for pure hard spheres. We test the theory for pure hard spheres and hard sphere mixtures near a planar hard wall and compare the results with the original Rosenfeld's FMT and one of its modifications and with new very accurate simulation data. The test reveals an excellent agreement between the results based on the alternative FMT and simulation data for density profile near a contact and some improvement over the original Rosenfeld's FMT and its modification at the contact region.  相似文献   

19.
A new equation of state for associating fluids has recently been presented by Medeiros and Tellez-Arredondo, the Cubic-Two-State Equation of State (CTS EoS) [Ind. Eng. Chem. Res. 47 (2008) 5723]. This equation arises from the coupling of the Soave–Redlich–Kwong EoS (SRK) with an association term from a two-state association model. The CTS EoS is polynomial in volume and it is able to describe vapor pressures and molar volume of associating fluids such as water, alcohol and phenol, among others. The equation is also able to describe the liquid–vapor equilibria of their mixtures with alkanes. In this paper, the physical and thermodynamic foundations of the CTS EoS are further investigated. In order to verify its applicability for cross-associating systems, the equation was employed in the prediction of phase equilibria behavior of binary alcohol–alcohol and water–alcohol mixtures. Very good agreement between predictions and experimental phase equilibria data was obtained with very simple combining rules and only one adjustable binary parameter. No additional parameters were necessary to describe ternary systems. With the purpose of checking the model's hypothesis and limitations, the two-state association term was coupled with the hard sphere Carnahan–Starling EoS, forming the CS-TS equation and the association characteristic parameters were determined theoretically for prototype association fluids. Monte Carlo NPT simulations of such fluids were performed and the results were compared with the equation's predictions. The CS-TS was able to describe qualitatively the pvTpvT behavior of the prototype; nevertheless, it is not as accurate as those predictions obtained from the combination CS with Wertheim's association term. It seems that, when adjusting parameters of the CTS EoS to real substances, the discrepancies between the predicted and the real association contribution are dissipated among other adjustable parameters, specially on the dispersive term of the SRK equation. Finally, it is shown that CTS EoS isotherms can only have one or three real bigger roots than the co-volume for positive pressures, similar to cubic equations of state, and then it has the desirable form to describe vapor–liquid phase equilibria of associating compounds mixtures.  相似文献   

20.
《Fluid Phase Equilibria》1998,145(2):193-215
A volume-translated Peng-Robinson (VTPR) equation of state (EOS) is developed in this study. Besides the two parameters in the original Peng-Robinson equation of state, a volume correction term is employed in the VTPR EOS. In this equation, the temperature dependence of the EOS energy parameter was regressed by an improved expression which yields better correlation of pure-fluid vapor pressures. The volume correction parameter is also correlated as a function of the reduced temperature. The VTPR EOS includes two optimally fitted parameters for each pure fluid. These parameters are reported for over 100 nonpolar and polar components. The VTPR EOS shows satisfactory results in calculating the vapor pressures and both the saturated vapor and liquid molar volumes. In comparison with other commonly used cubic EOS, the VTPR EOS presents better results, especially for the saturated liquid molar volumes of polar systems. VLE calculations on fluid mixtures were also studied in this work. Traditional van der Waals one-fluid mixing rules and other mixing models using excess free energy equations were employed in the new EOS. The VTPR EOS is comparable to other EOS in VLE calculations with various mixing rules, but yields better predictions on the molar volumes of liquid mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号