首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We discuss ultracold Fermi gases in two dimensions, which could be realized in a strongly confining one-dimensional optical lattice. We obtain the temperature versus effective interaction phase diagram for an s-wave superfluid and show that, below a certain critical temperature Tc, spontaneous vortex-antivortex pairs appear for all coupling strengths. In addition, we show that the evolution from weak-to-strong coupling is smooth, and that the system forms a square vortex-antivortex lattice at a lower critical temperature TM.  相似文献   

2.
The low-temperature phase of a Peierls system is studied theoretically taking into account the cubic anharmonicity of the interatomic interaction. It is shown that at a transition into the semiconductor phase a uniform deformation of the system occurs simultaneously with the atoms approaching one another in pairs. The cubic anharmonicity of the interatomic interaction (with a negative anharmonicity constant) produces a large increase in the band gap in the electronic spectrum and the order parameters—the reduced amplitude of the static phonon at the edge of the Brillouin zone and the relative uniform deformation of the atomic chain—of the metal-semiconductor phase transition. An interpretation of the experimental data on the metal-semiconductor phase transition in vanadium dioxide is given on the basis of the results obtained.  相似文献   

3.
We show that an ensemble of spinor Bose-Einstein condensates confined in a one-dimensional optical lattice can undergo a ferromagnetic phase transition and spontaneous magnetization arises due to the magnetic dipole-dipole interaction. This phenomenon is analogous to ferromagnetism in solid state physics, but occurs with bosons instead of fermions.  相似文献   

4.
Smith Ota  S B Ota 《Pramana》1994,43(2):129-137
We have simulated two-dimensional classical XY-model in a microcanonical ensemble using the Monte Carlo technique. Simulations were carried out on a square lattice having 25, 100 or 900-spins with periodic boundary conditions. The nearest neighbour interaction potential was taken to beV(θ)=2J[1−cos100(θ/2)]. The system energy, mean square magnetization and vortex-density were calculated as functions of temperature. A sudden change in the system energy, vortex density and mean square magnetization was observed at the first-order transition which is associated with this choice of the nearest neighbour interaction potential. The transition temperature increases with decrease in the system size. It is found that the creation of a vortex-antivortex pair costs more energy during the first-order transition than the energy associated with a tightly bound vortex-antivortex pair.  相似文献   

5.
The small size vortex-antivortex pairs proliferation in a type-II superconducting film is considered below T(c). The corresponding contribution to the free energy is calculated. It is shown that these fluctuations give the main temperature dependent contribution to the heat capacity of the superconducting film in the sufficiently large interval of temperatures below the transition point.  相似文献   

6.
Ali Alavi 《Molecular physics》2013,111(6):1173-1191
A realistic model of a monolayer molecular crystal of methane adsorbed on the (100) surface of MgO has been studied by means of molecular dynamics. The model treates the atomicity of the MgO substrate explicitly. Large corrugations in energy are found for both the translational and rotational motion of methane across the substrate. The preferred configurations of adsorption is over an Mg2+ ion in a tripod-down orientation. The orientationally ordered low-energy states of the monolayer have been found. Finite-size-scaling calculations on systems of different sizes indicate, however, that the ordered state exhibits only quasi-long-range order. The disclinations in the ordered phase exist in low concentrations and in bound pairs. Evidence is presented for a Kosterlitz-Thouless-type unbinding transition occurring at T c ≈ 27 K. No evidence is found for a first-order transition. The specific heat exhibits an anomaly at T ≈ 32 K. The disclination density in the region of the transition is reported; below T c, this density can be fitted to an Arrhenius-type law, yielding an estimate of the core enegy for a bound vortex-antivortex pair.  相似文献   

7.
Within the Ginzburg-Landau formalism, we predict two novel mechanisms of vortex-antivortex nucleation in a magnetically nanostructured superconductor. Although counterintuitive, nucleation of vortex-antivortex pairs can be activated in a superconducting (SC) film covered by arrays of submicron ferromagnets (FMs) when exposed to an external homogeneous magnetic field. In another scenario, we predict the thermal induction of vortex-antivortex configurations in SC-FM samples. This phenomenon leads to a new type of Little-Parks oscillations of the FM magnetization-temperature phase boundary of the SC film.  相似文献   

8.
The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information processing. In the present paper we demonstrate that this dipole-dipole interaction can generate the degenerate chiral quantum states acting as a qubit robust against noise when the ultracold polar molecules are confined by a triangular lattice. Moreover, we also find two first-order quantum phase transitions by controlling an external driving field. One is the transition with the change of the different degenerate chiral quantum states. The other is the transition with the breaking of the degenerate quantum chiral states to the nondegenerate state. In experiment, these first-order quantum phase transitions can be detected by measuring the collective molecular population.  相似文献   

9.
The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information processing. In the present paper we demonstrate that this dipole-dipole interaction can generate the degenerate chiral quantum states acting as a qubit robust against noise when the ultracold polar molecules are confined by a triangular lattice. Moreover, we also find two first-order quantum phase transitions by controlling an external driving field. One is the transition with the change of the different degenerate chiral quantum states. The other is the transition with the breaking of the degenerate quantum chiral states to the nondegenerate state. In experiment, these first-order quantum phase transitions can be detected by measuring the collective molecular population.  相似文献   

10.
Lattice model of directed self-avoiding walk has been solved analytically to investigate adsorption–desorption phase transition behaviour of a semiflexible sequential copolymer chain on a two-dimensional impenetrable surface perpendicular to the preferred direction of the walk of the copolymer chain in three dimensions. The stiffness of the chain has been accounted by introducing an energy barrier for each bend in the walk of the copolymer chain. Exact value of adsorption–desorption transition points have been determined using the generating function method for the cases in which one type of monomer is having interaction with the surface, namely (i) no interaction (ii) attractive interaction and (iii) repulsive interaction. Results obtained in each of the case show that for stiffer copolymer chain adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.  相似文献   

11.
We propose a model combining the first-order liquid-liquid and the second-order ferroelectric phase transitions phenomenology to explain various features of the λ-point of liquid water. We suggest that the long-range dipole-dipole interaction of water molecules leads to a ferroelectric phase transition, which occurs only in the low-density component of the liquid and is the origin of the singularity of the dielectric constant recently observed in experiments with supercooled liquid water in nanoporous materials. Finally, we establish the model parameters and prove the consistency of the combined model by comparing its predictions with experimental data and the results of recent molecular-dynamics simulations.  相似文献   

12.
We consider the problems of chaos and parametric control in nonlinear systems under an asymmetric potential subjected to a multiscale type excitation. The lower bound line for horseshoes chaos is analyzed using the Melnikov's criterion for a transition to permanent or transient nonperiodic motions, complement by the fractal or regular shape of the basin of attraction. Numerical simulations based on the basins of attraction, bifurcation diagrams, Poincare? sections, Lyapunov exponents, and phase portraits are used to show how stationary dissipative chaos occurs in the system. Our attention is focussed on the effects of the asymmetric potential term and the driven frequency. It is shown that the threshold amplitude ∣γ(c)∣ of the excitation decreases for small values of the driven frequency ω and increases for large values of ω. This threshold value decreases with the asymmetric parameter α and becomes constant for sufficiently large values of α. γ(c) has its maximum value for asymmetric load in comparison with the symmetric load. Finally, we apply the Melnikov theorem to the controlled system to explore the gain control parameter dependencies.  相似文献   

13.
We consider an ensemble of grains that interact through a dipole-dipole interaction. A granular gas is formed by the vertical motion of a piston at the bottom boundary of the system. The interaction between the grains is controlled by an horizontally applied magnetic field. When the speed of the piston is decreased, we observe a transition from a low density to a high density phase. When the interaction between grains is weak, the transition is continuous. It is discontinuous for stronger interaction. The phase diagram displays strong similarities with the ones observed for usual equilibrium phase transitions.  相似文献   

14.
磁性薄膜原子层数对极化方向的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
关键词:  相似文献   

15.
The phase diagram for a system of spatially separated electrons and holes in coupled quantum wells or graphene double layers is studied in the framework of a BCS-like mean-field approach and a Landau expansion in terms of the pairing order parameter. We find a second order transition between an electron–hole plasma and a BCS phase, as well as a first-order transition between the BCS phase and a bosonic Mott phase of tightly bound electron–hole pairs without phase coherence. The electron–hole plasma exists at low and at high densities for weak interaction, the BCS phase at moderate density and the Mott phase at high density and strong interaction.  相似文献   

16.
In cold dense Rydberg atom samples, the dipole-dipole interaction strength is effectively resonant at the typical interatomic spacing in the sample, and the interaction has a 1/R3 dependence on interatomic spacing R. The dipole-dipole attraction leads to ionizing collisions of initially stationary atoms, which produces hot atoms and ions and initiates the evolution of initially cold samples of neutral Rydberg atoms into plasmas. More generally, the strong dipole-dipole forces lead to motion, which must be considered in proposed applications.  相似文献   

17.
A ferroelectric phase transition in a system of electrically interacting small particles is considered. The size effects in a single particle are described in terms of the Landau phenomenological model. The interaction between particles is reduced to a dipole-dipole interaction. It is shown that the interparticle interaction can lead to a substantial increase in the phase transition temperature as compared to the temperature of the ferroelectric transition in a single small particle.  相似文献   

18.
Kerr介质中双光子T-C模型光场的量子特性   总被引:15,自引:0,他引:15       下载免费PDF全文
方家元  颜晓红  周明  黄春佳 《物理学报》2004,53(7):2133-2138
研究了存在Kerr介质时,耦合双原子与单模压缩真空场双光子跃迁相互作用系统光场的量子特性,讨论了Kerr介质和原子间偶极-偶极相互作用对光场量子特性的影响. 结果表明:当Kerr效应和偶极-偶极相互作用可以忽略时,光场U2分量的涨落能被周期性地压缩,随着Kerr效应和偶极-偶极相互作用的增强,光场的压缩逐渐变浅,压缩次数减少;Kerr效应和偶极-偶极相互作用的影响使光场的二阶相干度时间演化曲线呈现周期性的崩塌-回复现象,但不论耦合强度如何,光子总是呈现聚束效应. 关键词: Kerr介质 压缩真空场 耦合双原子 光场的量子特性  相似文献   

19.
Particles of magnetic fluids (ferrofluids), as is known from experiments, can condense to bulk dense phases at low temperatures (that are close to room temperature) in response to an external magnetic field. It is also known that a uniform external magnetic field increases the threshold temperature of the observed condensation, thus stimulating the condensation process. Within the framework of early theories, this phenomenon is interpreted as a classical gas-liquid phase transition in a system of individual particles involved in a dipole-dipole interaction. However, subsequent investigations have revealed that, before the onset of a bulk phase transition, particles can combine to form a chain cluster or, possibly, a topologically more complex heterogeneous cluster. In an infinitely strong magnetic field, the formation of chains apparently suppresses the onset of a gas-liquid phase transition and the condensation of magnetic particles most likely proceeds according to the scenario of a gas-solid phase transition with a wide gap between spinodal branches. This paper reports on the results of investigations into the specific features of the condensation of particles in the absence of an external magnetic field. An analysis demonstrates that, despite the formation of chains, the condensation of particles in this case can proceed according to the scenario of a gas-liquid phase transition with a critical point in the continuous binodal. Consequently, a uniform magnetic field not only can stimulate the condensation phase transition in a system of magnetic particles but also can be responsible for a qualitative change in the scenario of the phase transition. This inference raises the problem regarding a threshold magnetic field in which there occurs a change in the scenario of the phase transition.  相似文献   

20.
In this Letter, we investigate the effects of dipole-dipole interactions on the vortex lattices in fast rotating Bose-Einstein condensates. For single planar condensate, we show that the triangular lattice structure will be unfavorable when the s-wave interaction is attractive and exceeds a critical value. It will first change to a square lattice, and then become more and more flat with the increase of s-wave attraction, until the collapse of the condensate. For an array of coupled planar condensates, we discuss how the dipole-dipole interactions between neighboring condensates compete with quantum tunneling processes, which affects the relative displacement of two neighboring vortex lattices and leads to the loss of phase coherence between different condensates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号