首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The photoionization of alkylperoxy radicals has been investigated using a newly developed experimental apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. Methylperoxy (CH(3)OO) and ethylperoxy (C(2)H(5)OO) radicals are produced by the reaction of pulsed, photolytically produced alkyl radicals with molecular oxygen, and the mass spectrum of the reacting mixture is monitored in time by using synchrotron-photoionization with a double-focusing mass spectrometer. The kinetics of product formation is used to confirm the origins and assignments of ionized species. The photoionization efficiency curve for CH(3)OO has been measured, and an adiabatic ionization energy of (10.33 +/- 0.05) eV was determined with the aid of Franck-Condon spectral simulations, including ionization to the lowest triplet and singlet cation states. Using the appearance energy of CH(3)(+) from CH(3)OO, an enthalpy of formation for CH(3)OO of Delta(f) (CH(3)OO) = (22.4 +/- 5) kJ mol(-1) is derived. The enthalpy of formation of CH(3)OO(+) is derived as Delta(f) = (1019 +/- 7) kJ mol(-1) and the CH(3)(+)-OO bond energy as (CH(3)(+) - O(2)) = (80 +/- 7) kJ mol(-1). The C(2)H(5)OO(+) signal is not detectable; however, the time profile of the ethyl cation signal suggests its formation from dissociative ionization of C(2)H(5)OO. Electronic structure calculations suggest that hyperconjugation reduces the stability of the ethylperoxy cation, making the C(2)H(5)OO(+) ground state only slightly bound with respect to the ground-state products, C(2)H(5)(+) and O(2). The value of the measured appearance energy of C(2)H(5)(+) is consistent with dissociative ionization of C(2)H(5)OO via the Franck-Condon favored ionization to the ? (1)A' state of C(2)H(5)OO(+).  相似文献   

2.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

3.
Alkyl peroxy radicals are synthesized in a supersonic jet expansion by the initial production of alkyl radicals and subsequent reaction with molecular oxygen. Parent ions CH3OO+/CD3OO+ are observed employing vacuum ultraviolet (VUV) single photon ionizationtime-of-flight mass spectroscopy (TOFMS). Employing infrared (IR) + VUV photofragmentation detected spectroscopy, rotationally resolved infrared spectra of jet-cooled CH3OO and CD3OO radicals are recorded for the A 2A' <-- X 2A" transition by scanning the IR laser frequency while monitoring the CH3 + and CD3 + ion signals generated by the VUV laser. The band origins of the A 2A'<--X 2A" transition for CH3OO and CD3OO are identified at 7381 and 7371 cm(-1), respectively. Rotational simulation for the CH3OO and CD3OO 0(0) 0 transitions of A<--X yields a rotational temperature for these radicals of approximately 30 K. With the aid of ab initio calculations, two and five vibrational modes for the A 2A' excited electronic state are assigned for CH3OO and CD3OO radicals, respectively. Both experimental and theoretical results suggest that the ground electronic state of the ions of ethyl and propyl peroxy radicals are not stable although their ionization energies (IE) are less than 10.5 eV. The C2H5OO+/C3H7OO+ cations can readily decompose to C2H5 +/C3H7 + and O2. This is partially responsible for the inability of IR+VUV photofragmentation spectroscopy to detect the near IR A<--X electronic transition for these radicals.  相似文献   

4.
The formation and fragmentation of the molecular dication C(7)H(8)(2+) from cycloheptatriene (CHT) and the bimolecular reactivities of C(7)H(8)(2+) and C(7)H(6)(2+) are studied using multipole-based tandem mass spectrometers with either electron ionization or photoionization using synchrotron radiation. From the photoionization studies, an apparent double-ionization energy of CHT of (22.67 ± 0.05) eV is derived, and the appearance energy of the most abundant fragment ion C(7)H(6)(2+), formed via H(2) elimination, is determined as (23.62 ± 0.07) eV. Analysis of both the experimental data as well as results of theoretical calculations strongly indicate, however, that an adiabatic transition to the dication state is not possible upon photoionization of neutral CHT and the experimental value is just considered as an upper bound. Instead, an analysis via two different Born-Haber cycles suggests (2)IE(CHT) = (21.6 ± 0.2) eV. Further, the bimolecular reactivities of the C(7)H(n)(2+) dications (n = 6, 8), generated via double ionization of CHT as a precursor, with xenon as well as nitrogen lead, inter alia, to the formation of the organo-xenon dication C(7)H(6)Xe(2+) and the corresponding nitrogen adduct C(7)H(6)N(2)(2+).  相似文献   

5.
分子的电离电势、键能和离子的标准生成焓等都是非常重要的物理化学数据,它们对化学反应机理等研究有很大帮助,精确测定离子的出现势,就可以获得这些热力学常数.迄今为止,有关溴乙烷(C2H5Br)电离解离过程的研究已有若干报导[1-3],但这些结果均是在常温条件下,用电子轰击电离、彭宁电离或真空紫外灯辐照等方法获得的,由于常伴有热带效应、离子分子反应、离子对形成等过程[4],其结果的准确性往往较差.本文首次报导使用同步辐射光源对C2H5Br进行光电离解离研究.通过准确测量母体离子以及几种主要碎片离子的出现势,结合已有的公认的热力…  相似文献   

6.
Energy selected mono-, di- and trimethylamine ions were prepared by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). Below 13 eV, the main dissociative photoionization path of these molecules is hydrogen atom loss. The ion time-of-flight (TOF) distributions and breakdown diagrams for H loss are analyzed in terms of the statistical RRKM theory, which includes tunneling. Experimental evidence, supported by quantum chemical calculations, indicates that the reverse barrier along the H loss potential energy curve for monomethylamine is 1.8 +/- 0.6 kJ mol(-1). Accurate dissociation onset energies are derived from the TOF simulation, and from this analysis we conclude that Delta(f)H degrees (298K)[CH(2)NH(2)(+)] = 750.4 +/- 1.3 kJ mol(-1) and Delta(f)H degrees (298K)[CH(2)NH(CH(3))(+)] = 710.9 +/- 2.8 kJ mol(-1). Quantum chemical calculations at the G3, G3B3, CBS-APNO and W1U levels are extensively used to support the experimental data. The comparison between experimental and ab initio isodesmic reaction heats also suggests that Delta(f)H degrees (298K)[N(CH(3))(3)] = -27.2 +/- 2 kJ mol(-1), and that the dimethylamine ionization energy is 8.32 +/- 0.03 eV, both of which are in slight disagreement with previous experimental values. Above 13 eV photon energy, additional dissociation channels appear besides the H atom loss, such as a sequential C(2)H(4) loss from trimethylamine for which a dissociation mechanism is proposed.  相似文献   

7.
The dissociative photoionization of CH2Br2 in a region approximately 10-24 eV was investigated with photoionization mass spectroscopy using a synchrotron radiation source. An adiabatic ionization energy of 10.25 eV determined for CH2Br2 agrees satisfactorily with predictions of 10.26 and 10.25 eV with G2 and G3 methods, respectively. Observed major fragment ions CH2Br+, CHBr+, and CBr+ show appearance energies at 11.22, 12.59, and 15.42 eV, respectively; minor fragment ions CHBr2+, Br+, and CH2+ appear at 12.64, 15.31, and 16.80 eV, respectively. Energies for formation of observed fragment ions and their neutral counterparts upon ionization of CH2Br2 are computed with G2 and G3 methods. Dissociative photoionization channels associated with six observed fragment ions are proposed based on comparison of determined appearance energies and predicted energies. An upper limit of DeltaH0f,298(CHBr+) < or = 300.7 +/- 1.5 kcal mol(-1) is derived experimentally; the adiabatic ionization energy of CHBr is thus derived to be < or = 9.17 +/- 0.23 eV. Literature values for DeltaH0f,298(CBr+) = 362.5 kcal mol(-1) and ionization energy of 10.43 eV for CBr are revised to be less than 332 kcal mol(-1) and 9.11 eV, respectively. Also based on a new experimental ionization energy, DeltaH0f,298(CH2Br2+) is revised to be 236.4 +/- 1.5 kcal mol(-1).  相似文献   

8.
The aquachromyl(IV) ion, Cr(aq)O(2+), reacts with acetaldehyde and pivaldehyde by hydrogen atom abstraction and, in the presence of O(2), produces acylperoxyl radicals, RC(O)OO(*). In the next step, the radicals react with Cr(aq)OO(2+), a species accompanying Cr(aq)O(2+) in our preparations. The rate constant for the Cr(aq)OO(2+)/CH(3)C(O)OO(*) cross reaction, k(Cr) = 1.5 x 10(8) M(-1) s(-1), was determined by laser flash photolysis. The evidence points to radical coupling at the remote oxygen of Cr(aq)OO(2+), followed by elimination of O(2) and formation of CH(3)COOH and Cr(V)(aq)O(3+). The latter disproportionates and ultimately yields Cr(aq)(3+) and HCrO(4)(-). No CO(2) was detected. The Cr(aq)OO(2+)/C(CH(3))(3)C(O)OO(*) reaction yielded isobutene, CO(2), and Cr(aq)(3+), in addition to chromate. In the suggested mechanism, the transient Cr(aq)OOOO(O)CC(CH(3))(3)(2+) branches into two sets of products. The path leading to chromate resembles the CH(3)C(O)OO(*) reaction. The other products arise from an unprecedented intramolecular hydrogen transfer from the tert-butyl group to the CrO entity and elimination of CO(2) and O(2). A portion of C(CH(3))(3)C(O)OO(*) was captured by (CH(3))(3)COO(*), which was in turn generated by decarbonylation of acyl radicals and oxygenation of tert-butyl radicals so formed.  相似文献   

9.
The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.  相似文献   

10.
We have developed an effusive laser photodissociation radical source, aiming for the production of vibrationally relaxed radicals. Employing this radical source, we have measured the vacuum ultraviolet (VUV) photoionization efficiency (PIE) spectrum of the propargyl radical (C(3)H(3)) formed by the 193 nm excimer laser photodissociation of propargyl chloride in the energy range of 8.5-9.9 eV using high-resolution (energy bandwidth = 1 meV) multibunch synchrotron radiation. The VUV-PIE spectrum of C(3)H(3) thus obtained is found to exhibit pronounced autoionization features, which are tentatively assigned as members of two vibrational progressions of C(3)H(3) in excited autoionizing Rydberg states. The ionization energy (IE = 8.674 +/- 0.001 eV) of C(3)H(3) determined by a small steplike feature resolved at the photoionization onset of the VUV-PIE spectrum is in excellent agreement with the IE value reported in a previous pulsed field ionization-photoelectron study. We have also calculated the Franck-Condon factors (FCFs) for the photoionization transitions C(3)H(3) (+)(X;nu(i),i = 1-12)<--C(3)H(3)(X). The comparison between the pattern of FCFs and the autoionization peaks resolved in the VUV-PIE spectrum of C(3)H(3) points to the conclusion that the resonance-enhanced autoionization mechanism is most likely responsible for the observation of pronounced autoionization features. We also present here the VUV-PIE spectra for the mass 39 ions observed in the VUV synchrotron-based photoionization mass spectrometric sampling of several premixed flames. The excellent agreement of the IE value and the pattern of autoionizing features of the VUV-PIE spectra observed in the photodissociation and flames studies has provided an unambiguous identification of the propargyl radical as an important intermediate in the premixed combustion flames. The discrepancy found between the PIE spectra obtained in flames and photodissociation at energies above the IE(C(3)H(3)) suggests that the PIE spectra obtained in flames might have contributions from the photoionization of vibrationally excited C(3)H(3) and/or the dissociative photoionization processes involving larger hydrocarbon species formed in flames.  相似文献   

11.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

12.
Alkylamines (RCH(2)NH(2), R = H, CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7)) have been investigated by dissociative photoionization by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). The 0 K dissociation limits (9.754 +/- 0.008, 9.721 +/- 0.008, 9.702 +/- 0.012, and 9.668 +/- 0.012 eV for R = CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7), respectively) have been determined by preparing energy-selected ions and collecting the fractional abundances of parent and daughter ions. All alkylamine cations produce the methylenimmonium ion, CH(2)NH(2)+, and the corresponding alkyl free radical. Two isodesmic reaction networks have also been constructed. The first one consists of the alkylamine parent molecules, and the other of the alkyl radical photofragments. Reaction heats within the isodesmic networks have been calculated at the CBS-APNO and W1U levels of theory. The two networks are connected by the TPEPICO dissociation energies. The heats of formation of the amines and the alkyl free radicals are then obtained by a modified least-squares fit to minimize the discrepancy between the TPEPICO and the ab initio values. The analysis of the fit reveals that the previous experimental heats of formation are largely accurate, but certain revisions are suggested. Thus, Delta(f)Ho(298K)[CH(3)NH(2)(g)] = -21.8 +/- 1.5 kJ mol-1, Delta(f)Ho(298K)[C(2)H(5)NH(2)(g)] = -50.1 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)NH(2)(g)] = -70.8 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)*] = 101.3 +/- 1 kJ mol(-1), and Delta(f)Ho(298K)[i-C(3)H(7)*] = 88.5 +/- 1 kJ mol(-1). The TPEPICO and the ab initio results for butylamine do not agree within 1 kJ mol-1; therefore, no new heat of formation is proposed for butylamine. It is nevertheless indicated that the previous experimental heats of formation of methylamine, propylamine, butylamine, and isobutylamine may have been systematically underestimated. On the other hand, the error in the ethyl radical heat of formation is found to be overestimated and can be decreased to +/- 1 kJ mol(-1); thus, Delta(f)Ho(298K)[C(2)H(5).] = 120.7 +/- 1 kJ mol(-1). On the basis of the data analysis, the heat of formation of the methylenimmonium ion is confirmed to be Delta(f)Ho(298K)[CH(2)NH(2)+] = 750.3 +/- 1 kJ mol(-1).  相似文献   

13.
Time-of-flight mass spectrometry and two-dimensional coincidence techniques have been used to determine, for the first time, the relative precursor-specific partial ionization cross sections following electron-methane collisions. Precursor-specific partial ionization cross sections quantify the contribution of single, double, and higher levels of ionization to the partial ionization cross section for forming a specific ion (e.g. CH(+)) following electron ionization of methane. Cross sections are presented for the formation of H(+), H(2)(+), C(+), CH(+), CH(2)(+), and CH(3)(+), relative to CH(4)(+), at ionizing electron energies from 30 to 200 eV. We can also reduce our dataset to derive the relative partial ionization cross sections for the electron ionization of methane, for comparison with earlier measurements. These relative partial ionization cross sections are in good agreement with recent determinations. However, we find that there is significant disagreement between our partial ionization cross sections and those derived from earlier studies. Inspection of the values of our precursor-specific partial ionization cross sections shows that this disagreement is due to the inefficient collection of energetic fragment ions in the earlier work. Our coincidence experiments also show that the lower energy electronic states of CH(4)(2+) populated by electron double ionization of CH(4) at 55 eV are the same (ground (3)T(1), first excited (1)E(1)) as those populated by 40.8 eV photoionization. The (3)T(1) state dissociating to form CH(3)(+) + H(+) and CH(2)(+) + H(2)(+) and the (1)E(1) to form CH(2)(+) + H(+) and CH(+) + H(+). At this electron energy, we also observe population of the first excited triplet state of CH(4)(2+) ((3)T(2)) which dissociates to both CH(2)(+) + H(+) + H and CH(+) + H(+) + H(2).  相似文献   

14.
Quantitative identification of isomers of hydrocarbon radicals in flames is critical to understanding soot formation. Isomers of C4H3 and C4H5 in flames fueled by allene, propyne, cyclopentene, or benzene are identified by comparison of the observed photoionization efficiencies with theoretical simulations based on calculated ionization energies and Franck-Condon factors. The experiments combine molecular-beam mass spectrometry (MBMS) with photoionization by tunable vacuum-ultraviolet synchrotron radiation. The theoretical simulations employ the rovibrational properties obtained with B3LYP/6-311++G(d,p) density functional theory and electronic energies obtained from QCISD(T) ab initio calculations extrapolated to the complete basis set limit. For C4H3, the comparisons reveal the presence of the resonantly stabilized CH2CCCH isomer (i-C4H3). For C4H5, contributions from the CH2CHCCH2 (i-C4H5) and some combination of the CH3CCCH2 and CH3CHCCH isomers are evident. Quantitative concentration estimates for these species are made for allene, cyclopentene, and benzene flames. Because of low Franck-Condon factors, sensitivity to n-isomers of both C4H3 and C4H5 is limited. Adiabatic ionization energies, as obtained from fits of the theoretical predictions to the experimental photoionization efficiency curves, are within the error bars of the QCISD(T) calculations. For i-C4H3 and i-C4H5, these fitted adiabatic ionization energies are (8.06 +/- 0.05) eV and (7.60 +/- 0.05) eV, respectively. The good agreement between the fitted and theoretical ionization thresholds suggests that the corresponding theoretically predicted radical heats of formation (119.1, 76.3, 78.7, and 79.1 kcal/mol at 0 K for i-C4H3, i-C4H5, CH3CCCH2, and CH3CHCCH, respectively) are also quite accurate.  相似文献   

15.
Thermochemical parameters of hydroxymethylene (HC:OH) and 1-hydroxyethylidene (CH3C:OH) were evaluated by using coupled-cluster, CCSD(T), theory, in conjunction with the augmented correlation consistent, aug-cc-pVnZ, basis sets, with n = D, T, Q, and 5, extrapolated to the complete basis set limit. The predicted value at 298 K for Delta Hf(CH2O) is -26.0 +/- 1 kcal/mol, as compared to an experimental value of -25.98 +/- 0.01 kcal/mol, and for Delta Hf(CH:OH) it is 26.1 +/- 1 kcal/mol. The hydroxymethylene-formaldehyde energy gap is 52.1 +/- 0.5 kcal/mol, the singlet-triplet separation of hydroxymethylene is Delta E(ST)(HC:OH) = 25.3 +/- 0.5 kcal/mol, the proton affinity is PA(HC:OH) = 222.5 +/- 0.5 kcal/mol, and the ionization energy is IEa(HC:OH) = 8.91 +/- 0.04 eV. The predicted value at 298 K for Delta Hf(CH3CHO) is -39.1 +/- 1 kcal/mol as compared to an experimental value of -40.80 +/- 0.35 kcal/mol, and for Delta Hf(CH3C:OH) it is 11.2 +/- 1 kcal/mol. The hydroxyethylidene-acetaldehyde energy gap is 50.6 +/- 0.5 kcal/mol, the singlet-triplet separation of 1-hydroxyethylidene is Delta E(ST)(CH3C:OH) = 30.5 +/- 0.5 kcal/mol, the proton affinity is PA(CH3C:OH) = 234.7 +/- 0.5 kcal/mol, and the ionization energy is IEa(CH3C:OH) = 8.18 +/- 0.04 eV. The calculated energy differences between the carbene and aldehyde isomers, and, thus, the heats of formation of the carbenes, differ from the experimental values by 2.5 kcal/mol.  相似文献   

16.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

17.
A joint threshold photoelectron photoion coincidence spectrometry (TPEPICO) and collision-induced dissociation (CID) study on the thermochemistry of Co(CO)(2)NOPR(3), R = CH(3) (Me) and C(2)H(5) (Et), complexes is presented. Adiabatic ionization energies of 7.36 +/- 0.04 and 7.24 +/- 0.04 eV, respectively, were extracted from scans of the total ion and threshold electron signals. In the TPEPICO study, the following 0 K onsets were determined for the various fragment ions: CoCONOPMe(3)(+), 8.30 +/- 0.05 eV; CoNOPMe(3)(+), 9.11 +/- 0.05 eV; CoPMe(3)(+) 10.80 +/- 0.05 eV; CoCONOPEt(3)(+), 8.14 +/- 0.05 eV; CoNOPEt(3)(+), 8.92 +/- 0.05 eV; and CoPEt(3)(+), 10.66 +/- 0.05 eV. These onsets were combined with the Co(+)-PR(3) (R = CH(3) and C(2)H(5)) bond dissociation energies of 2.88 +/- 0.11 and 3.51 +/- 0.17 eV, obtained from the TCID experiments, to derive the heats of formation of the neutral and ionic species. Thus, the Co(CO)(2)NOPR(3) (R = CH(3) and C(2)H(5)) 0 K heats of formation were found to be -350 +/- 13 and -376 +/- 18 kJ x mol(-)(1), respectively. These heats of formation were combined with the published heat of formation of Co(CO)(3)NO to determine the substitution enthalpies of the carbonyl to phosphine substitution reactions. Room-temperature values of the heats of formation are also given using the calculated harmonic vibrational frequencies. Analysis of the TCID experimental results provides indirectly the adiabatic ionization energies of the free phosphine ligands, P(CH(3))(3) and P(C(2)H(5))(3), of 7.83 +/- 0.03 and 7.50 +/- 0.03 eV, respectively.  相似文献   

18.
Using photofragment translational spectroscopy and tunable vacuum-ultraviolet ionization, we measured the time-of-flight spectra of fragments upon photodissociation of vinyl fluoride (CH2CHF) at 157 and 193 nm. Four primary dissociation pathways--elimination of atomic F, atomic H, molecular HF, and molecular H2--are identified at 157 nm. Dissociation to C2H3 + F is first observed in the present work. Decomposition of internally hot C2H3 and C2H2F occurs spontaneously. The barrier heights of CH2CH --> CHCH + H and cis-CHCHF --> CHCH + F are evaluated to be 40+/-2 and 44+/-2 kcal mol(-1), respectively. The photoionization yield spectra indicate that the C2H3 and C2H2F radicals have ionization energies of 8.4+/-0.1 and 8.8+/-0.1 eV, respectively. Universal detection of photoproducts allowed us to determine the total branching ratios, distributions of kinetic energy, average kinetic energies, and fractions of translational energy release for all dissociation pathways of vinyl fluoride. In contrast, on optical excitation at 193 nm the C2H2 + HF channel dominates whereas the C2H3 + F channel is inactive. This reaction C2H3F --> C2H2 + HF occurs on the ground surface of potential energy after excitation at both wavelengths of 193 and 157 nm, indicating that internal conversion from the photoexcited state to the electronic ground state of vinyl fluoride is efficient. We computed the electronic energies of products and the ionization energies of fluorovinyl radicals.  相似文献   

19.
利用同步辐射光源和反射式飞行时间质谱, 在超声冷却条件下对二乙基锌(ZnC4H10)进行真空紫外(VUV, 能量范围为8-22 eV)光电离光解离研究. 实验获得ZnC4H10的光电离质谱图; 通过测量各碎片离子的光电离效率(PIE)曲线, 获得ZnC4H10的电离势(IP=8.20±0.05 eV)及其碎片离子(ZnC2H5+、ZnH+、Zn+、C2H5+、C2H3+等)的出现势. 根据实验结果, 并结合相关文献所给的热力学数据, 推导出这些主要碎片离子的生成焓, 并分析它们可能的解离通道和主要离子的分支比. 结果表明, 其主要解离通道是母体离子发生Zn—C 键的断裂形成ZnC2H5+和C2H5+离子, ZnC2H5+离子再进一步解离形成Zn+离子, 并且含锌碎片离子的丰度占75%以上.  相似文献   

20.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号