首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The ion-contact complexes [{(eta(5)-Cp)(2)Mn(eta(2):eta(5)-Cp)K}(3)]x0.5 THF (1x0.5 THF) and [{(eta(2)-Cp)(2)(eta(2);eta(5)-MeCp)MnK(thf)}]x2 THF (2x2 THF) and ion-separated complexes [Mg(thf)(6)][(eta(2)-Cp)(3)Mn](2) (3), [Mg(thf)(6)][(eta(2)-Cp)(eta(2)-MeCp)(2)Mn)](2)x0.5 THF (4x0.5 THF), [Mg(thf)(6)][(eta(2)-MeCp)(3)Mn)](2)x0.5 THF (5x0.5 THF) and [Li([12]crown-4)](5)[(eta-Cp)(3)Mn](5) (6) (Cp=C(5)H(5), CpMe=C(5)H(4)CH(3)), have been prepared and structurally characterised. The effects of varying the Cp and CpMe ligands in complexes 1-5 have been probed by variable-temperature magnetic susceptibility measurements and EPR spectroscopic studies.  相似文献   

2.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

3.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

4.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

5.
Wang Y  Feng L  Li Y  Hu C  Wang E  Hu N  Jia H 《Inorganic chemistry》2002,41(24):6351-6357
Two novel compounds, [Co(4,4'-bipy)(H(2)O)(4)](4-abs)(2).H(2)O (1) and [Mn(4,4'-bipy)(H(2)O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis. X-ray structural analysis revealed that 1 and 2 both possess unusual hydrogen-bonded three-dimensional (3-D) networks encapsulating one-dimensional (1-D) covalently bonded infinite [M(4,4'-bipy)(H(2)O)(4)](2+) (M = Co, Mn) chains. The 4-abs anions in 1 form 1-D zigzag chains through hydrogen bonds. These chains are further extended through crystallization water molecules into 3-D hydrogen-bonded networks with 1-D channels, in which the [Co(4,4'-bipy)(H(2)O)(4)](2+) linear covalently bonded chains are located. Crystal data for 1: C(22)H(30)CoN(4)O(11)S(2), monoclinic P2(1), a = 11.380(2) A, b = 8.0274(16) A, c = 15.670(3) A, alpha = gamma = 90 degrees, beta = 92.82(3) degrees, Z = 2. Compound 2 contains interesting two-dimensional (2-D) honeycomb-like networks formed by 4-abs anions and lattice water molecules via hydrogen bonding, which are extended through other crystallization water molecules into three dimensions with 1-D hexagonal channels. The [Mn(4,4'-bipy)(H(2)O)(4)](2+) linear covalent chains exist in these channels. Crystal data for 2: C(22)H(32)MnN(4)O(12)S(2), monoclinic P2(1)/c, a = 15.0833(14) A, b = 8.2887(4) A, c = 23.2228(15) A, alpha = gamma = 90 degrees, beta = 95.186(3) degrees, Z = 4.  相似文献   

6.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

7.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

8.
The reaction of MeAlCl2 with MesPHLi (1:4 equivalents) in thf/toluene gives the cage complex [[MeAl(mu-PMes)(PMes)]2Li4]2 x 7thf (1), containing an [[MeAl(mu-PMes)(PMes))2]4- tetraanion which is valence-isoelectronic with extensively studied Group 15 anions of the type [E(mu-NR)(NR)]2(2-).  相似文献   

9.
The reaction of MCl4(thf)2 (M = Zr, Hf) with 1,4-dilitiobutane in diethyl ether at –25 °C or at 0 °C with a molar ratio of 1 : 3 yields the homoleptic “ate” complexes [(thf)4Li] [{(thf)Li}M(C4H8)3] 1 - Zr (M = Zr) and 1 - Hf (M = Hf). The crystalline compounds form ion lattices with solvent-separated [(thf)4Li]+ cations and [{(thf)Li}M(C4H8)3] anions. The NMR spectra at –20 °C show magnetic equivalence of the M–CH2 and of the β-CH2 groups of the butane-1,4-diide ligands on the NMR time scale. Analogous reactions of MCl4(thf)2 with 1,4-dilithiobutane with a molar ratio of 1 : 2 proceed unclear. However, single crystals of [Li(thf)4] [HfCl5(thf)] ( 2 ) can be isolated with the hafnium atom in a distorted octahedral coordination sphere of five chloro and one thf ligand. NMR spectra allow to elucidate the time-dependent degradation of 1-Hf and 1-Zr in THF and toluene at 25 °C via THF cleavage. Addition of tmeda to a solution of 1-Zr allows the isolation of intermediately formed [{(tmeda)Li}2Zr(nBu)2(C4H8)2] ( 3 ).  相似文献   

10.
The following crystalline, or microcrystalline (4), metal diamides have been prepared under mild conditions from the N,N'-disubstituted 1,2-diaminobenzene [{N(R)H}2C6H4-1,2] (H(2): R = CH2But; H2L': R = SiMe2NPri2): [Li(thf)(mu-L)(mu-I)Ca(thf)] (1), [Li(thf)4][{Zn(mu-L)}3(mu3-Cl)] (2), [Li(thf)4][Zn(L)2] (3), [{Li(OEt2)(mu-L)Zn}2(mu-L)] (4), [Li(OEt2)(mu-L)Zn(mu-L)Zn(LH)] (5) and [Li(thf)(mu-L')Li(thf)2] (6). Compounds 1-5 were obtained from [Li2(L)] and CaI2 (1) or ZnCl2 (2-5) while 6 was derived from H2(L') and LiBun. Compound 5 was isolated as a very minor by-product from the synthesis of 4, and is assumed to have been formed therefrom by adventitious hydrolysis. The green salt 3 was paramagnetic with the negative charge uniformly delocalised on the two ligands. The other compounds were colourless and diamagnetic. The X-ray structures of each, except 4, are reported and discussed.  相似文献   

11.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

12.
The [3 + 1] reaction of [W(3)S(4)(H(2)O)(9)](4+) with [W(CO)(6)] in 2 M HCl under hydrothermal conditions (130 degrees C) gives the [W(4)S(4)(H(2)O)(12)](6+) cuboidal cluster, reduction potential 35 mV vs NHE (6+/5+ couple). The reduced form is obtained by controlled potential electrolysis. X-ray crystal structure was determined for (Me(2)NH(2))(6)[W(4)S(4)(NCS)(12)].0.5H(2)O. The W-W and W-S bond lengths are 2.840 and 2.379 A, respectively.  相似文献   

13.
A number of metal complexes containing one of the following ligands: the 1-azaallyl [N(R)C(Ph)C(H)R]- ([triple bond]L-), the 1,3-diazaallyl([triple bond]LL'-) and the isomeric beta-diketiminate [{N(R)C(Ph)]}2CH]- ( identical with LL-) have been prepared (R = SiMe(3)). These are the crystalline compounds H(LL) (2), Na(LL) (3), [Na(LL)(thf)2] (4), Na(L) (6), [Na(mu-LL')]8 (7), [K(mu-L)(eta6-C6H6)]2 (8), [K(mu-LL')(thf)]2 (9), [K(thf)2(mu-LL)](infinity) (10) and [Ni(LL')2] (11). A new synthesis of Na[C(H)R2] (1) involved Hg[C(H)R2]2 and Na/Hg as reagents. The beta-diketimine 2 was obtained from Li(LL) and cyclopentadiene. Under different conditions compounds 3, 6 and 7 were isolated from 1 and benzonitrile, and compounds 8, 9 and 10 from K[C(H)R2] and PhCN. Complex 11 was derived from [Li(LL')]2 and [NiBr(2)(dme)]. The solution obtained from 1 + 2 PhCN in Et2O at ambient temperature was a mixture (5) of 3 (predominantly) and 7. The 1-azaallyl complex 8 has the ligand bound to the metal as the enamide, and this is also probably (NMR) the case for 6. The molecular structures of the crystalline complexes 7, 8 and 11 are presented; that of 10 was published earlier. Compound 7, a cyclooctamer, is particularly interesting, in that each LL'- ligand is bridging via one of its N atoms to two neighbouring sodium ions and is not only N,N'- but also (eta2-C[=]C)-chelating to one of them.  相似文献   

14.
Reaction of M(OAc)(2).xH(2)O (M = Mn, Cu, or Cd) with di-tert-butyl phosphate (dtbp-H) in a 1:2 molar ratio in methanol followed by slow crystallization of the resultant solid in MeOH/THF medium results in the formation of three new polymeric metal phosphates [M(dtbp)(2)](n)() [M = Mn, 1 (beige); M = Cu, 2 (blue)] and [Cd(dtbp)(2)(H(2)O)](n)(), 3 (colorless)] in good yields. The formation of [Mn(dtbp)(2)](n) (1) proceeds via tetrameric manganese phosphate [Mn(4)(O)(dtbp)(6)] (4), which has been isolated in an analytically pure form. Perfectly air- and moisture-stable compounds 1-4 were characterized with the aid of analytical, thermoanalytical, and spectroscopic techniques. The molecular structures of 1-3 were further established by single-crystal X-ray diffraction studies. Crystal data for 1: C(32)H(72)Mn(2)O(16)P(4), monoclinic, P2(1)/c, a = 19.957(4) A, b = 13.419(1) A, c = 18.083(2) A, beta = 91.25(2) degrees, Z = 4. Crystal data for 2: C(16)H(36)CuO(8)P(2), orthorhombic, Pccn, a = 23.777(2) A, b = 10.074(1) A, c = 10.090(1) A, Z = 4. Crystal data for 3: C(48)H(114)Cd(3)O(27)P(6), triclinic, P1, a = 12.689(3) A, b = 14.364(3) A, c = 22.491(5) A, alpha = 84.54(3) degrees, beta = 79.43(3) degrees, gamma = 70.03(3) degrees, Z = 2. The diffraction studies reveal three different structural forms for the three compounds investigated, each possessing a one-dimensional coordination polymeric structure. While alternating triple and single dtbp bridges are found between the adjacent Mn(2+) ions in 1, uniform double dtbp bridges across the adjacent Cu(2+) ions are present in 2. The cadmium ions in the structure of 3 are pentacoordinated. Thermal analysis (TGA and DSC) indicates that compounds 1-3 convert to the corresponding crystalline metaphosphate materials M(PO(3))(2), in each case at temperatures below 500 degrees C. Similarly, the thermal decomposition of 4 results in the formation of Mn(PO(3))(3) and Mn(2)P(2)O(7). The final materials obtained by independent thermal decomposition of bulk samples have been characterized using IR spectroscopic, powder diffraction, and N(2) adsorption studies.  相似文献   

15.
On the Reaction of Macrocycles with Lanthanoids. I. The Crystal Structure of [Li(thf)][(C22H22N4)2Ce] · THF In THF CeBr3 forms with [(TMTAA)Li2] the paramagnetic doubledecker complex [Li(thf)][(TMTAA)2Ce]. The complex crystallizes with 1 Mol THF per formula unit. The structure was characterized by X-ray single crystal structure analysis (space group C2 (No. 5), z = 6, a = 1741.8(2) pm, b = 1622.1(2) pm, c = 2540.4(3) pm, β = 104.72(1)°). The sandwich-like arrangement of the heterocyclic ligands leads to a quadratic-prismatic coordination of the Ce3+ ion. One macrocyclic ligand is additionally coordinated by a [Li(thf)]+ fragment. The coordination of the Li ion is square pyramidal.  相似文献   

16.
In the solid state, OP[N(H)Me](3) (1a) and OP[N(H)(t)Bu](3) (1b) have hydrogen-bonded structures that exhibit three-dimensional and one-dimensional arrays, respectively. The lithiation of 1b with 1 equiv of (n)BuLi generates the trimeric monolithiated complex (THF)[LiOP(N(t)Bu)[N(H)(t)Bu](2)](3) (4), whereas reaction with an excess of (n)BuLi produces the dimeric dilithium complex [(THF)(2)Li(2)OP(N(t)Bu)(2)[N(H)(t)Bu]](2) (5). Complex 4 contains a Li(2)O(2) ring in an open-ladder structure, whereas 5 embraces a central Li(2)O(2) ring in a closed-ladder arrangement. Investigations of the lithiation of tris(alkyl or arylamido)thiophosphates, SP[N(H)R](3) (2a, R = (i)Pr; 2b, R = (t)Bu; 2c, R = p-tol) with (n)BuLi reveal interesting imido substituent effects. For the alkyl derivatives, only mono- or dilithiation is observed. In the case of R = (t)Bu, lithiation is accompanied by P-S bond cleavage to give the dilithiated cyclodiphosph(V/V)azane [(THF)(2)Li(2)[((t)BuN)(2)P(micro-N(t)Bu)(2)P(N(t)Bu)(2)]] (9). Trilithiation occurs for the triaryl derivatives EP[N(H)Ar](3) (E = S, Ar = p-tolyl; E = Se, Ar = Ph), as demonstrated by the preparation of [(THF)(4)Li(3)[SP(Np-tol)(3)]](2) (10) and [(THF)(4)Li(3)[SeP(NPh)(3)]](2) (11), which are accompanied by the formation of small amounts of 10.[LiOH(THF)](2) and 11.Li(2)Se(2)(THF)(2), respectively.  相似文献   

17.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

18.
Synthesis and Crystal Structure of [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], and (Ph4P)4[Bi6I22] Solutions of BiI3 in THF or methanol react with MI (M = Li, Na) to form polynuclear iodo complexes of bismuth. The syntheses and results of X-ray structure analyses of compounds [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], [Na(thf)6]4[Bi6I22] and (Ph4P)4[Bi6I22] are described. The anions of these compounds consist of edge-sharing BiI6 and BiI5(thf) octahedra. The Bi atoms lie in a plane and are coordinated by bridging and terminal I atoms and by THF ligands in a distorted octahedral fashion. [Li(thf)4]2[Bi4I14(thf)2]: Space group P1 (No. 2), a = 1 159.9(6), b = 1 364.6(7), c = 1 426.5(7) pm, α = 114.05(3), β = 90.01(3), γ = 100.62(3)°. [Li(thf)4]4[Bi5I19]: Space group P21/n (No. 14), a = 1 653.0(9), b = 4 350(4), c = 1 836.3(13) pm, β = 114.70(4)°. [Na(thf)6]4[Bi6I22]: Space group P21/n (No. 14), a = 1 636.4(3), b = 2 926.7(7), c = 1 845.8(4) pm, β = 111.42(2)°. (Ph4P)4[Bi6I22]: Space group P1 (No. 2), a = 1 368.6(7), b = 1 508.1(9), c = 1 684.9(8) pm, α = 98.28(4), β = 95.13(4), γ = 109.48(4)°.  相似文献   

19.
Synthesis and Characterization of Organodilithium Phosphides. The Crystal Structure of [Li(THF)(TMEDA)P(H)Mes] t-BuPH2 and MesPH2 can be reacted with two equivalents n-BuLi at R. T. in Et2O/n-hexane to yield the corresponding organodilithium phosphides t-BuPLi2 ( 1 ) and MesPLi2 ( 2 ). 1 and 2 can be isolated solvent-free as bright orange-yellow solids. 1 and 2 were characterized by NMR, IR, and RE spectra. When MesPH2 is treated with one equivalent of n-BuLi, MesP(H)Li is crystallizing as [Li(THF)(TMEDA)P(H)Mes] ( 3 ) from THF/TMEDA/n-pentane in the space group P21/n with a = 893.41(6), b = 1 734.7(1), c = 1 391.1(1) pm and β = 90.613(6)°.  相似文献   

20.
Synthesis and structure of a Molybdenum–Gadolinium Heterometallic Complex. The Structure of [Li(thf)4]2[Cp2MoSGdBr4(thf)]2 [Cp2MoHLi] reacts in THF with S and GdBr3 to yield the tetranuclear heterobimetallic complex [Li(thf)4]2[Cp2MoSGdBr4(thf)]2. The bonding situation and the structure of this compound were characterized by X-ray structure analysis (space group P1 (No. 2), Z = 1, a = 10.845(2) Å, b = 12.166(2) Å, c = 15.881(2) Å, α = 101.74(2)°, β = 97.62(2)°, γ = 103.97(2)°). Each S atom of the central Mo2S2-ring is coordinated by a GdBr4(thf) fragment. Additionally each Mo atom is connected to two Cp ligands. This leads to a tetrahedral coordination of the Mo atoms and a octahedral coordination of the Gd ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号