首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two highly branched glucose polymers with similar structures—starch and glycogen—have important relations to human health. Slowly digestible and resistant starches have desirable health benefits, including the prevention and alleviation of metabolic diseases and prevention of colon cancer. Glycogen is important in regulating the use of glucose in the body, and diabetic subjects have an anomaly in their glycogen structure compared with that in healthy subjects. This paper reviews the biosynthesis–structure–property relations of these polymers, showing that polymer characterization produces knowledge which can be useful in producing healthier foods and new drug targets aimed at improving glucose storage in diabetic patients. Examples include mathematical modeling to design starch with better nutritional values, the effects of amylose fine structures on starch digestibility, the structure of slowly digested starch collected from in vitro and in vivo digestion, and the mechanism of the formation of glycogen α particles from β particles in healthy subjects. A new method to overcome a current problem in the structural characterization of these polymers using field-flow fractionation is also given, through a technique to calibrate evaporative light scattering detection with starch.
Figure
?  相似文献   

2.
Industrially relevant characterization of multi-walled carbon nanotubes (MWCNT) is still a challenging task. The aim of this work is to show novel and fast concepts for the chemical characterization of carbon nanotubes (CNT) by a combination of analytical techniques. Information obtained by individual tools like Fourier transform infrared spectroscopy (FTIR), attenuated total reflection infrared spectroscopy or Raman spectroscopy is not providing a full picture of the functionalization of MWCNTs. However, a combination of tools such as FTIR or mass spectrometry with thermogravimetric methods proved to be very useful. Sample preparation for FTIR and Raman spectroscopy is another focus of this contribution because of its strong effect on the results obtained. We also are suggesting methods for sample preparation that lead to highly reproducibility results. Measurements have been carried out on typical CNT samples such as commercially available pristine, carboxylated and amino-functionalized MWCNTs, and on polystyrenegrafted MWCNTs. The results may serve as a guidance for the qualitative and quantitative characterization of CNT.
Figure
3D-TGA-FTIR image of amine functionalized MWCNT with relating TGA curve  相似文献   

3.
The molecular composition of mycobacteria and Gram-negative bacteria cell walls is structurally different. In this work, Raman microspectroscopy was applied to discriminate mycobacteria and Gram-negative bacteria by assessing specific characteristic spectral features. Analysis of Raman spectra indicated that mycobacteria and Gram-negative bacteria exhibit different spectral patterns under our experimental conditions due to their different biochemical components. Fourier transform infrared (FTIR) spectroscopy, as a supplementary vibrational spectroscopy, was also applied to analyze the biochemical composition of the representative bacterial strains. As for co-cultured bacterial mixtures, the distribution of individual cell types was obtained by quantitative analysis of Raman and FTIR spectral images and the spectral contribution from each cell type was distinguished by direct classical least squares analysis. Coupled atomic force microscopy (AFM) and Raman microspectroscopy realized simultaneous measurements of topography and spectral images for the same sampled surface. This work demonstrated the feasibility of utilizing a combined Raman microspectroscopy, FTIR, and AFM techniques to effectively characterize spectroscopic fingerprints from bacterial Gram types and mixtures.
Figure
AFM deflection images, Raman spectra, SEM images, and FTIR of Mycobacterium sp. KMS  相似文献   

4.
Determination of the characteristics of native starches is crucial in order to select their best application in various industrial fields. Thus, two different types of non-traditional native starches from the Dioscoreaceas species (Dioscorea sp. and Dioscorea piperifolia Humb. var. Wild) were studied regarding their thermal, structural and rheological properties. The results were contrasted with traditional commercial starch sources (potato, cassava and corn). From the thermogravimetric results (TG/DTG), D. piperifolia starch obtained the highest thermal stability of the samples, except for potato starch. Furthermore, using differential scanning calorimetry and viscoamylograph profiles (RVA), it was found that the Dioscoreaceas starches presented a higher onset (T o) temperature and susceptibility to retrogradation. They also showed lower values in relation to relative crystallinity, which was calculated from their X-ray patterns and tendency to white (L*) colour. The shapes of the Discoreaceas starch granules were determined using electron microscopy; it was found that as the potato starch the Dioscoreaceas starches showed a wide range of particle size.  相似文献   

5.
Heme and heme degradation products play critical roles in numerous biological phenomena which until now have only been partially understood. One reason for this is the very low concentrations at which free heme, its complexes and the partly unstable degradation products occur in living cells. Therefore, powerful and specific detection methods are needed. In this contribution, the potential of nondestructive Raman spectroscopy for the detection, quantification and discrimination of heme and heme degradation products is investigated. Resonance Raman spectroscopy using different excitation wavelengths (413, 476, 532, and 752?nm) is employed to estimate the limit of detection for hemin, myoglobin, biliverdin, and bilirubin. Concentrations in the low micromolar range (down to 3?μmol/L) could be reliably detected when utilizing the resonance enhancement effect. Furthermore, a systematic study on the surface-enhanced Raman spectroscopy (SERS) detection of hemin in the presence of other cellular components, such as the highly similar cytochrome c, DNA, and the important antioxidant glutathione, is presented. A microfluidic device was used to reproducibly create a segmented flow of aqueous droplets and oil compartments. Those aqueous droplets acted as model chambers where the analytes have to compete for the colloid. With the help of statistical analysis, it was possible to detect and differentiate the pure substances as well as the binary mixtures and gain insights into their interaction.
Figure
Resonance Raman spectrum of met-myoglobin and Raman intensity - concentration - calibration plot.  相似文献   

6.
In recent years, Raman spectroscopy has shown substantive promise in diagnosing bladder cancer, especially due to its exquisite molecular specificity. The ability to reduce false detection rates in comparison to existing diagnostic tools such as photodynamic diagnosis makes Raman spectroscopy particularly attractive as a complementary diagnostic tool for real-time guidance of transurethral resection of bladder tumor (TURBT). Nevertheless, the state-of-the-art high-volume Raman spectroscopic probes have not reached the expected levels of specificity thereby impeding their clinical translation. To address this issue, we propose the use of a confocal Raman probe for bladder cancer diagnosis that can boost the specificity of the diagnostic algorithm based on its suppression of the out-of-focus non-analyte-specific signals emanating from the neighboring normal tissue. In this article, we engineer and apply such a probe, having depth of field of approximately 280?μm, for Raman spectral acquisition from ex vivo normal and cancerous TURBT samples. Using this clinical dataset, a diagnostic algorithm based on principal component analysis and logistic regression is developed. We demonstrate that this approach results in comparable sensitivity but significantly higher specificity in relation to high-volume Raman spectral data. The application of only two principal components is sufficient for the discrimination of the samples underlining the robustness of the algorithm. Further, no discordance between replicate spectra is observed emphasizing the reproducible nature of the current diagnostic assessment. The high levels of sensitivity and specificity achieved in this proof-of-concept study opens substantive avenues for application of a confocal Raman probe during endoscopic procedures related to diagnosis and treatment of bladder cancer.
Figure
Artistic depiction of the working principle of the confocal Raman spectroscopic sensor for urinary bladder cancer diagnosis  相似文献   

7.
The nicotine metabolites, cotinine and trans-3′-hydroxycotinine (3HC) are considered as superior biomarkers for identifying tobacco exposure. More importantly, the ratio of 3HC to cotinine is a good indicator to phenotype individuals for cytochrome P450 2A6 activity and to individualize pharmacotherapy for tobacco addiction. In this paper, a simple, robust and novel method based on surface-enhanced Raman spectroscopy coupled with thin-layer chromatography (TLC) was developed to directly quantify the biomarkers in human urine samples. This is the first time surface-enhanced Raman spectroscopy (SERS) was used to detect cotinine and 3HC in urine samples. The linear dynamic range for the detection of cotinine is from 40 nM to 8 μM while that of 3HC is from 1 μM to 15 μM. The detection limits are 10 nM and 0.2 μM for cotinine and 3HC, respectively. The proposed method was further validated by quantifying the concentration of both cotinine and 3HC in smokers’ urine samples. This TLC-SERS method allows the direct detection of cotinine in the urine samples of both active and passive smokers and the detection of 3HC in smokers.
Figure
Scheme of the procedure for detection of cotinine and 3HC  相似文献   

8.
Surface enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical tools in recent years. Due to advantageous features such as sensitivity, specificity, ease of operation and rapidity, SERS is particularly well suited for environmental analysis. We summarize here some considerations with respect to the detection of pollutants by SERS and provide an overview on recent achievements in the determination of organic pollutants, heavy metal ions, and pathogens. Following an introduction into the topic and considering aspects of sensitivity, selectivity, reproducibility and portability, we are summarizing applications of SERS in the detection of pollutants, with sections on organic pollutants (pesticides, PAHs and PCBs, explosives), on heavy metal ions, and on pathogens. In addition, we discuss current challenges and give an outlook on applications of SERS in environmental analysis. Contains 174 references.
Figure
The application of surface enhanced Raman spectroscopy (SERS) for the detection of environmental pollutants.  相似文献   

9.
Elemental composition assignment confidence in mass spectrometry is typically assessed by monoisotopic mass accuracy. For a given mass accuracy, resolution and detection of other isotopologues can further narrow the number of possible elemental compositions. However, such measurements require ultrahigh resolving power and high dynamic range, particularly for compounds containing low numbers of nitrogen and oxygen (both 15N and 18O occur at less than 0.4 % natural abundance). Here, we demonstrate validation of molecular formula assignment from isotopic fine structure, based on ultrahigh resolution broadband Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Dynamic range is enhanced by external quadrupole and internal stored waveform inverse Fourier transform (SWIFT) isolation to facilitate detection of low abundance heavy atom isotopologues.
Figure
?  相似文献   

10.
In this work, we present the development of a method for the determination of doxorubicin in plasma samples in the presence of an unexpected component (riboflavin) by using total synchronous fluorescence spectroscopic data matrices. To the best of our knowledge, this is the first time that the second-order advantage is obtained with this kind of data. Two strategies including unfolding the data and: (a) processing with multivariate curve resolution coupled to alternating least-squares as first-order data or (b) processing with unfolded partial least-squares and exploiting the second-order advantage by the residual bilinearization procedure were considered. The calibration set was built with human plasma samples spiked with doxorubicin, while the validation set was prepared with human plasma samples spiked with both doxorubicin and riboflavin, a drug whose spectrum highly overlaps with the one corresponding to doxorubicin. Both methodologies reached good indicators of accuracy: recoveries of ca. 100?±?8 % and REP of ca. 5 %; and precision: coefficient of variations between 7 and 9 %.
Figure
?  相似文献   

11.
The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.
Figure
?  相似文献   

12.
Multiwalled carbon nanotubes were grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) and employed for solid phase extraction and preconcentration of trace lead ions prior to its determination by inductively coupled plasma optical emission spectrometry. The material was characterized by FT-IR and Raman spectroscopy, thermosgravimetric and elemental analysis. The effects of pH value, shaking time, sample volume, elution conditions and potentially interfering ions were investigated. Under the optimum conditions, the maximum adsorption capacity is 38?mg?g?1 of Pb(II), the detection limit is 0.32?ng?mL?1, the enrichment factor is 60, and the relative standard deviation is 3.5% (n?=?6). The method has been applied to the preconcentration of trace amounts of Pb(II) in environmental water samples with satisfactory results.
Figure
Oxidized multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) is prepared and employed as solid phase extraction sorbent to determinate the trace Pb(II) in water samples. The method has been applied to the preconcentration of trace amount of Pb(II) in water samples with satisfactory results.  相似文献   

13.
A nanocomposite film is described that is composed of alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles that interact through electrostatic forces. The films of varying thickness were prepared by the layer-by-layer technique, and Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The composite films were characterized by UV?Cvis spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Most nanocomposite films exhibit linear, uniform, and regular layer-by-layer growth during the process of formation. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.
Figure
A nanocomposite film was prepared by alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles, in which Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.  相似文献   

14.
Chiroptical methods are widely used in structural and conformational analyses of biopolymers. The application of these methods to investigations of biofluids would provide new avenues for the molecular diagnosis of protein-misfolding diseases. In this work, samples of human blood plasma and hen egg white were analyzed using a combination of conventional and chiroptical methods: ultraviolet absorption/electronic circular dichroism (UV/ECD), Fourier transform infrared absorption/vibrational circular dichroism (FTIR/VCD), and Raman scattering/Raman optical activity (Raman/ROA). For comparison, the main components of these substances—human serum albumin (HSA) and ovalbumin (Ova)—were also analyzed by these methods. The ultraviolet region of the ECD spectrum was analyzed using the CDNN CD software package to evaluate the secondary structures of the proteins. The UV/ECD, FTIR/VCD, and Raman/ROA spectra of the substances were quite similar to those of the corresponding major proteins, while some differences were also detected and explained. The conclusions drawn from the FTIR/VCD and Raman/ROA data were in good agreement with the secondary structures calculated from ECD. The results obtained in this work demonstrate that the chiroptical methods used here can be applied to analyze not only pure protein solutions but also more complex systems, such as biological fluids.
Figure
Analysis of human blood plasma and hen egg white by ECD, VCD and ROA.  相似文献   

15.
A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.
Fig
Aptamer detection of OTA within a SERS/microfluidic channel  相似文献   

16.
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Figure
?  相似文献   

17.
Monitoring the dispersed phase of an oil-in-water (O–W) emulsion by means of Fourier transform infrared (FTIR) spectroscopy is a challenging task, restricted to the continuous phase that is in contact with the FTIR probe. Nonetheless, real-time measurement and kinetic analysis by FTIR, including analysis of the dispersed, often non-polar phase containing substrates and/or products, is desirable. Enzymatic hydrolysis of sunflower oil was performed in an O–W emulsion. After separation of the oil phase by use of a newly developed μ-membrane module, infrared spectra were collected using an attenuated total reflectance (ATR) cell. Different chemometric models were calibrated using the partial least squares (PLS) algorithm. Online application of a chemometric model based on the FTIR spectra enabled real-time monitoring of free fatty acid concentrations in the oil phase.
Figure
?  相似文献   

18.
We have designed and synthesized a thermosensitive tri-block copolymer for selective trace extraction of Pb(II) ions from biological and food samples. The polymer was characterized by Fourier transform IR and NMR spectroscopy, and by gel permeation chromatography. The critical aggregation concentration and lower critical solution temperature were determined via fluorescence and UV spectrophotometry, respectively. The effects of solution pH value, amount of copolymer, of the temperature on extraction and on phase separation, and of the matrix on the extraction of Pb(II) were optimized. Pb(II) ions were then quantified by FAAS. The use of this copolymer resulted in excellent figures of merit including a calibration plot extending from 0.5 to 160 μg L?1 (with an R2 of >0.99), a limit of detection (LOD) as low as 90 pg L?1, an extraction efficiency of >98 %, and relative standard deviations of <4 % for eight separate extraction experiments.
Figure
In this paper, for the first time an intelligent system using a thermosensitive tri-block copolymer for selective trace removal of Pb(II) in biological and food samples was designed and its determination was carried out by flame atomic absorption spectrometry.  相似文献   

19.
The fundamental parameters and limitations that determine the signal strength in tip-enhanced Raman scattering (TERS) are discussed. A semiquantitative analysis of the Raman signal expected in different experimental geometries and with different sample systems is presented, taking into account experimental parameters including Fresnel factor, numerical aperture of the illumination and collection optics, detection efficiency, and the Raman scattering cross section of the material. A top/side-on illumination geometry is essential for the study of nontransparent samples. It can yield the highest signal levels when strong tip–sample coupling using a metallic substrate provides large field enhancement. In contrast, axial/through-sample illumination is limited to transparent sample materials. Although conceptually simpler in experimental implementation and despite high numerical aperture signal collection efficiency, signals are generally weaker due to limited field enhancement. Crystalline solids with small Raman cross sections and dense molecular/biological systems with unavoidable far-field background provide the biggest challenge for TERS analysis yet at the same time hold the most exciting outstanding scientific questions TERS has the potential to answer.
Figure 3
Excitation and emission sequence in tip-enhanced Raman scattering. The signal intensity can be estimated for a given experimental layout considering numerical aperture, Raman scattering cross-section, and plasmonic field enhancement.  相似文献   

20.
The application of microwave-assisted extraction (MAE) to the work-up of environmental and biological samples in the study of mercury speciation analysis has increased in recent years and is now increasingly accepted as a standard approach. The review provides a brief theoretical background of microwave heating and the basic principles of microwave energy used for extraction. The advantages and disadvantages of (a) MAE techniques, (b) the influence of the main parameters affecting the extraction, (c) statistical optimization approaches, and (d) strategies for method validation also are highlighted. Recent applications of MAE to mercury species analyses in biological samples, soils, sediments, and crude oil samples are surveyed and critically reviewed. In addition, comparisons of its use with other well-established extraction procedures are discussed.
Figure
Microwave-assisted extraction has become a very useful sample preparation techniques in the study of mercury speciation in environmental and biological samples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号