首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced efficiency of the adsorption process in the dehumidifier is a key element for improved performance of desiccant cooling systems. Due to the exothermic nature of the adsorption process, the dehumidification and cooling capacity are limited by significant temperature changes in the adsorption column. In the present study, the effects of integration of sensible and latent heat storage particles in the desiccant bed for in situ management of released adsorption heat are investigated. For this purpose, column experiments are performed using an initially dry granular bed made of silica-gel particles or a homogeneous mixture of silica gel and inert sensible or latent heat storage particles. The packed bed is subject to a sudden uniform air flow at selected values of temperature and humidity. Also, a packed bed numerical model is developed that includes the coupled non-equilibrium heat and moisture transfer in the solid and gas phases. Investigations of the heat and mass transfer characteristics are reported using the composite structure and the results are compared with the base case of simple silica gel bed. Improved desiccant cooling system performance can be obtained by appropriate adjustment of desiccant cycle operation and proper choice of the volume ratio of thermal energy storage particles.  相似文献   

2.
Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.  相似文献   

3.
There may be condensation on the fin surfaces of the air conditioning systems due to the temperature of the fin surfaces being below the dew point temperature of the water vapor in the surrounding air. Heat and mass transfer occur from the saturated air layer to the liquid water film and the latent heat of condensation is transferred to the fin. This study presents a quasilinearization solution for vertical rectangular fins when condensation occurs, assuming that the average convective heat and mass transfer coefficients are constant along the height of the fin. Rectangular fins with and without condensation on the surface have been compared and optimum fin dimensions have been given. The optimum fin length, the fin effectiveness and the average fin temperature in the case of condensation were found to be smaller than in the case of no condensation.  相似文献   

4.
A numerical study has been made of convective heat and mass transfer from a falling film to a laminar gas stream between vertical parallel plates. The effects of gas-liquid phase coupling, variable thermophysical properties, and film vaporization have been considered. Simultaneous mass, momentum and heat transfer between liquid film and gas stream is numerically studied by solving the respective governing equations for the liquid film and gas stream together. The influences of the inlet liquid temperature and liquid flowrate on the cooling of liquid film are examined for air-water and air-ethanol systems. Results show that the heat transfer from the gas-liquid interface to the gas stream is predominantly determined by the latent heat transfer connected with film evaporation. Additionally, better liquid film cooling is noticed for the system having a higher inlet liquid temperature or a lower liquid flowrate.  相似文献   

5.
The study of the transport phenomena in desiccant airflow systems has been addressed in numerous research works, some of them concerning combined processes of cooling, dehumidification and energy recovery. In this paper a detailed numerical model is used to simulate the behaviour of a parallel-plate channel, cyclically exposed to two airflows with different inlet conditions, the plate being composed by a substrate and a desiccant porous layer. The modelled channel is considered to be representative of a real channel of a hygroscopic matrix that is operating at steady state regime, like it occurs in desiccant or enthalpy rotors. The numerical results are treated in order to represent the global behaviour of the hygroscopic rotor under steady state conditions. Results of a parametric study are presented as maps of isovalues of the heat and mass transfer rates and of the outlet states of both airflows, considering channels of distinct wall thickness, of different thickness of the desiccant and the subtract layers, together with wide ranges of the rotation speed and of the wheel partition. The mapped results presented provide an overview of the operation characteristics of hygroscopic rotors, allowing a quick determination of the optimum range of values for relevant parameters, such as the rotation speed and the wheel partition. The model is thus an interesting tool for design and manufacture purposes of enthalpy and desiccant wheels.  相似文献   

6.
The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COPSensible), latent coefficient of performance (COPLatent) and, total coefficient of performance (COPTotal). The performance of the heat wheel is based on its effectiveness. The COPSensible, COPLatent and, COPTotal are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COPLatent, COPSensible and COPTotal predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models.  相似文献   

7.
A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.  相似文献   

8.
Film boiling of binary liquid mixtures may be significantly different from that of single-component liquids due to the mass diffusion effect. A theoretical analysis is performed to outline the effects of mass diffusion phenomena on film boiling heat transfer process from a horizontal cylinder heating surface to the binary liquid mixtures of ethylene oxide/water and ethanol/benzene over whole range of compositions. These two binary systems are chosen for illustrating the strong and weak mass diffusion effects, respectively, on film boiling. Furthermore, a simple correlation for predicting heat transfer coefficient is proposed to demonstrate the idea that the dimensionless F factor can satisfactorily account for the mass diffusion effect on film boiling heat transfer of binary mixtures.  相似文献   

9.
The purpose of this study is to analyse the combined heat and mass transfer of liquid film condensation from a small steam–air mixtures flowing downward along a vertical tube. Both liquid and gas stream are approached by two coupled laminar boundary layer. An implicit finite difference method is employed to solve the coupled governing equations for liquid film and gas flow together with the interfacial matching conditions. The effects of a wide range of changes of three independent variables (inlet pressure, inlet Reynolds number and wall temperature) on the concentration at exit tube, local Nusselt and Sherwood numbers, film thickness, accumulated condensate rate and temperature are carefully examined. The numerical results indicate that in the case of condensing a small concentration of vapours from a mixture, the resistance to heat and mass transfer by non-condensable gas becomes very intense. The comparisons of average Nusselt number and local condensate heat transfer coefficient with the literature results are in good agreement.  相似文献   

10.
In many industrial processes as well as in air conditioning systems heat and moisture is transferred by rotary heat exchangers from the warm exhaust air flow to the cold supply air flow. Rotary heat exchangers are classified as sorption rotors, hygroscopic rotors and condensation rotors. Basic mechanisms of heat and moisture transfer are presented. By means of the condensation potential as the difference between the moisture content of the warm air flow and the moisture content of the cold air flow at saturation the humidity transfer at the different rotor types is investigated. The condensation potential as a reference parameter provides the possibility to describe the influence of various air conditions in exhaust air and supply air flow on the humidity transfer of different rotary heat exchangers and to compare these rotors with each other. In order to give an overview of relevant design parameters, the influence of the speed of turning, the flute height of the rotor matrix and the velocity of the air flow regarding the heat and mass transfer is considered.  相似文献   

11.
 In the last five years or so, true-colour image processing has gone being available mainly to highly technical users on expensive image processing systems to being used by virtually anyone who can use a desktop computer. Also, during the past 25 years, liquid crystals have emerged as reliable temperature sensors for heat transfer research, and have been applied in a number of situations to visualise the temperature distribution under complex flow fields. In this study the true-colour image processing of the liquid crystal (LC) images was developed successfully and applied to the study of heat and mass transfer problems. The history of this technique is reviewed and principal methods are described and some examples are presented. Received on 20 September 1996  相似文献   

12.
Theoretical and experimental study of the paper drying process are presented. A mathematical model developed for combined heat ad mass transfer analysis of paper drying is given for both impinging air jets and through air drying methods. In this model, it is simply assumed that during the drying period of the paper has porous media and on the drying surface the vapour pressure of the evaporating liquid remains at a quasi-saturated value corresponding to the temperature of the liquid. The calculated transient paper temperatures in both methods agree well with the experimental results.  相似文献   

13.
Air and water velocity fields have been simulated during natural convection, using a two-dimensional volume of fluid (VOF) model. The results have shown that during unstable thermal stratification, the root-mean-square (RMS) airside velocities are an order of magnitude higher than the RMS waterside velocities, whereas, during the stable thermal stratification, the velocity magnitudes are comparable for air and water sides. Furthermore, the magnitude of the air velocity changed more rapidly with the change in the bulk air–water temperature difference than the water velocity, indicating that the air velocities are more sensitive to the bulk air and water temperature difference than the water velocities. A physical model of the heat and mass transfer across the air–water interface is defined. According to this model, the vortices on the air and water sides play an important role in enhancing the heat and mass transfer. Due to the significance of the flow velocities in the transport process, it has been proposed that the correlations for the heat and mass transfer during natural convection should be improved by incorporating the flow velocity as a parameter.  相似文献   

14.
Air injection as a stabilization method is evaluated for flow boiling in a micro tube. Pyrex glass tube coated by ITO film is employed as a test tube for flow visualization with water as a working fluid. Air bubble and liquid slug lengths are controlled by changing air and liquid mass velocities. Wall temperatures and inlet/outlet pressures show very large fluctuations during flow boiling without air injection. Severe reverse flow is also observed from flow visualization. On the other hand, wall temperature and inlet/outlet pressures as well as visualized flow patterns become very stable with air injection. In addition, much higher heat transfer coefficients are obtained for air injected cases. It is observed from the flow visualization that the flow becomes much stable and shows regular patterns.  相似文献   

15.
 Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs. Received on 21 November 2000 / Published online: 29 November 2001  相似文献   

16.
This paper presents a general differential mathematical model to analyze the simultaneous heat and mass transfer processes that occur in different components of an ammonia–water absorption system: absorber, desorber, rectifier, distillation column, condenser and evaporator. Heat and mass transfer equations are considered, taking into account the heat and mass transfer resistances in the liquid and vapour phases. The model considers the different regions: vapour phase, liquid phase and an external heating or cooling medium. A finite difference numerical method has been considered to solve the resulting set of nonlinear differential equations and an iterative algorithm is proposed for its solution. A map of possible solutions of the mass transferred composition z is presented when varying the interface temperature, which enables to establish a robust implementation code. The analysis is focused on the processes presented in ammonia–water absorption systems. The model is applied to analyze the ammonia purification process in an adiabatic packed rectification column and the numerical results show good agreement with experimental data.  相似文献   

17.
A detailed numerical study has been performed to investigate the combined heat and mass transfer in laminar mixed convection channel flows with uniform wall heat flux. In an initial effort the liquid film on the channel wall is assumed to be extremely thin in thickness. Major dimensionless groups governing the present problem areGr T,Gr Mx,Pr,Sc, φ andRe. Results are specifically presented for an air-water system under various conditions. The effects of wall heating flux, the Reynolds number and the relative humidity of the moist air in the ambient on the momentum, heat and mass transfer in the flow are investigated in great detail.  相似文献   

18.
Impinging air jets of various shapes, sizes and configurations are commonly used in heating, cooling and drying industrial processes. An analytical study has been carried out to optimise the thermal performance of single and multiple nozzle systems using impinging air jets. The optimisation of the nozzle array was given for practical purposes. The results show that within practical limits, a narrower nozzle size results in a greater heat and mass transfer coefficient. An economical analysis of the drying processes is also given for slot nozzles.  相似文献   

19.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

20.
This study presents a two dimensional analysis of coupled heat and mass transfer during the process of pasta drying. Velocity and temperature distributions of air flowing around the pasta are predicted in steady state condition. Using these profiles and the similarity between heat and mass boundary layers, local convective heat and mass transfer coefficients were determined on different points of pasta surface. By employing these values, the solution of coupled heat and mass transfer equations within the pasta object in unsteady state condition was obtained. Furthermore the effects of operating conditions such as velocity, temperature and relative humidity of air flow on drying rate of pasta were studied. Sensitivity analysis results show that the effects of air temperature and relative humidity on the rate of drying are more important than the effect of air velocity. Finally, the results obtained from this analysis were compared with the experimental data reported in the literatures and a good agreement was observed while, no adjustable parameter is used in the presented model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号