首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) as binder. By using the CILE as basal electrode, the hemoglobin (Hb) molecule was immobilized on the surface of CILE with a sodium alginate (SA) hydrogel and SiO2 nanoparticles organic-inorganic composite material. The direct electrochemical behaviors of Hb in the bionanocomposite film were further studied in a pH 7.0 Britton-Robinson (B-R) buffer solution. A pair of well-defined quasi-reversible cyclic voltammetric peaks of Hb was obtained on SA/nano-SiO2/Hb/CILE with the formal potential (E0’) at -0.355 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The formal potential of Hb Fe(III)/Fe(II) couple shifted negatively with increasing pH of solution with a slope of -45.2 mV/pH, which indicated that a one electron transfer accompanied with one proton transportation. The immobilized Hb showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).  相似文献   

2.
In this article we report on the fabrication of a carbon ionic liquid electrode (CILE) by using a room temperature ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as binder. It was further modified by single‐walled carbon nanotubes (SWCNTs) to get a SWCNTs modified CILE denoted as SWCNTs/CILE. The redox protein of hemoglobin (Hb) was further immobilized on the surface of SWCNTs/CILE with the help of Nafion film. UV‐vis and FT‐IR spectra indicated that the immobilized Hb retained its native conformation in the composite film. The direct electrochemistry of Hb on the SWCNTs/CILE was carefully studied in pH 7.0 phosphate buffer solution (PBS). Cyclic voltammetric results indicated that a pair of well‐defined and quasireversible voltammetric peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential (E°') at ?0.306 V (vs. SCE). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the apparent heterogeneous electron transfer rate constant (ks) were calculated as 0.34, 0.989 and 0.538 s?1, respectively. The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) in the concentration range from 20.0 to 150.0 mmol/L with the detection limit of 10.0 mmol/L (3σ).  相似文献   

3.
《Analytical letters》2012,45(15):2460-2473
Abstract

The direct electrochemistry of hemoglobin (Hb) was realized on chitosan and multiwalled carbon nanotubes (MWCNTs)–modified carbon ionic liquid electrode (CILE). The CILE was fabricated first and further modified by MWCNTs to get an electrode as MWCNTs/CILE. The Hb was immobilized on the surface of MWCNTs/CILE with the help of chitosan film. Ultraviolet–visible (UV-vis) and Fourier transform–infrared (FT-IR) spectra indicated that Hb kept its native structure in the modified film. A pair of well-defined quasi-reversible redox peaks of heme Fe(III)/Fe(II) couple appeared with the formal potential (E0′) as ?0.314 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The modified electrode showed good electrocatalytic ability for the reduction of trichloroacetic acid.  相似文献   

4.
Direct electrochemistry of hemoglobin (Hb) was realized on a Nafion and CuS microsphere composite film modified carbon ionic liquid electrode (CILE) with N-butylpyridinium hexafluorophosphate (BPPF6) as binder. Scanning electron microscopy (SEM), UV-Vis absorption spectroscopy and cyclic voltammetry were used to characterize the fabricated Nafion/CuS/Hb/CILE. Experimental results showed that a pair of well-defined quasi-reversible redox peaks appeared with the formal potential as ?0.386 V (vs. SCE) in pH 7.0 Britton-Robinson (B-R) buffer solution, which was attributed to the Hb heme Fe(III)/Fe(II) redox couples. The electrochemical parameters of Hb in the composite film were carefully investigated with the charge transfer coefficient (α), the electron transfer number (n) and the electron transfer rate constant (k s) as 0.505, 1.196 and 0.610 s?1, respectively. The composite film provided a favorable microenvironment for retaining the native structure of Hb. The presence of CuS microspheres showed great improvement on the electron transfer rate of Hb with the CILE, which maybe due to the contribution of specific characteristics of CuS microspheres and the inherent advantages of ionic liquid on the modified electrode. The fabricated Hb modified electrode showed good electrocatalytic ability in the reduction of H2O2. The proposed bioelectrode can be used as a new third generation H2O2 biosensor.  相似文献   

5.
In this paper, a carbon ionic liquid electrode (CILE) was fabricated using ionic liquid 1-hexylpyridinium hexafluorophosphate as modifier, which was further in situ electrodeposited with graphene (GR) and gold nanoparticles step by step to get an Au/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the Au/GR/CILE surface with Nafion film to get the modified electrode denoted as Nafion/Mb/Au/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal potential (E 0′) located at ?0.197 V (vs. saturated calomel electrode), which was the typical characteristics of Mb heme Fe(III)/Fe(II) redox couples. Thus, the direct electron transfer rate between Mb and the modified electrode was promoted due to the high conductivity and increased surface area of Au/GR nanocomposite present on electrode surface. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb-modified electrode showed excellent electrocatalytic activities towards the reduction of trichloroacetic acid and H2O2 with wider linear range and lower detection limit. Using GR and Au nanoparticles modified CILE, a new third-generation electrochemical Mb biosensor was constructed with good stability and reproducibility.  相似文献   

6.
制备了离子液体[BMIM]PF6修饰碳糊电极(CILE), 并对其形貌和电化学行为进行了表征. 采用涂布法利用壳聚糖-皂土有机-无机复合膜将血红蛋白(Hb)固定于CILE电极表面, 利用紫外可见光谱、红外光谱和电化学方法等手段对包埋于膜内的Hb的性质进行了表征. 结果表明, Hb在薄膜内保持了其原始构象与生物活性, 循环伏安实验表明, 在pH=7.0的Britton-Robinson (B-R)缓冲液中, Hb表现出一对峰形良好的准可逆氧化还原峰, 为Hb Fe(III)/Fe(II)电对的特征峰, 对其直接电化学行为进行了研究, 求出式电位为-0.352 V(vs SCE), 电子转移数为0.885, 电荷传递系数为0.578, 表观异相电子转移速率常数为0.149 s-1.  相似文献   

7.
Wei Sun  Peng Qin  Ruijun Zhao  Kui Jiao 《Talanta》2010,80(5):2177-138
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM]EtOSO3) as modifier and further gold nanoparticles were in situ electrodeposited on the surface of CILE. The fabricated Au/CILE was used as a new platform for the immobilization of hemoglobin (Hb) with the help of a Nafion film. Electrochemical experimental results indicated that direct electron transfer of Hb was realized on the surface of Au/CILE with a pair of well-defined quasi-reversible redox peaks appeared. The formal peak potential (E0) was obtained as −0.210 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS), which was the characteristic of Hb heme Fe(III)/Fe(II) redox couple. The fabricated Nafion/Hb/Au/CILE showed excellent electrocatalytic activity to the reduction of trichloroacetic acid (TCA) and the reduction peak current was in proportional to TCA concentration in the range from 0.2 to 18.0 mmol/L with the detection limit as 0.16 mmol/L (S/N = 3). The proposed electrode showed good stability and reproducibility, and it had the potential application as a new third-generation electrochemical biosensor.  相似文献   

8.
In this paper a room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was used as binder for the construction of carbon ionic liquid electrode (CILE) and a new electrochemical biosensor was developed for determination of H2O2 by immobilization of hemoglobin (Hb) in the composite film of Nafion/nano‐CaCO3 on the surface of CILE. The Hb modified electrode showed a pair of well‐defined, quasi‐reversible redox peaks with Epa and Epc as ?0.265 V and ?0.470 V (vs. SCE). The formal potential (E°′) was got by the midpoint of Epa and Epc as ?0.368 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The peak to peak separation was 205 mV in pH 7.0 Britton–Robinson (B–R) buffer solution at the scan rate of 100 mV/s. The direct electrochemistry of Hb in the film was carefully investigated and the electrochemical parameters of Hb on the modified electrode were calculated as α=0.487 and ks=0.128 s?1. The Nafion/nano‐CaCO3/Hb film electrode showed good electrocatalysis to the reduction of H2O2 in the linear range from 8.0 to 240.0 μmol/L and the detection limit as 5.0 μmol/L (3σ). The apparent Michaelis–Menten constant (KMapp) was estimated to be 65.7 μmol/L. UV‐vis absorption spectroscopy and FT‐IR spectroscopy showed that Hb in the Nafion/nano‐CaCO3 composite film could retain its native structure.  相似文献   

9.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

10.
Room temperature ionic liquids (RTILs) N‐butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE) was fabricated and applied to adsorb the hemoglobin (Hb) and TiO2 nanoparticles on the electrode surface step by step to form a Hb modified electrode noted as TiO2/Hb/CILE. UV‐Vis and FT‐IR spectra showed that Hb in the film retained its native conformations. Cyclic voltammetric experiments indicated that a pair of well‐defined quasi‐reversible redox peaks appeared with the formal potential (E0′) located at ?0.251 V (vs. SCE) at pH 7.0 phosphate buffer solution (PBS), which was the characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters of the Hb in the film such as the electron transfer coefficient (α), the electron transfer number (n) and the standard electron transfer rate constant (ks) were estimated as 0.469, 0.87 and 0.635 s?1, respectively.  相似文献   

11.
By using a 1‐butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the working electrode, graphene (GR) nanosheets and silver nanoparticles (Ag NPs) were step by step electrodeposited on the surface of the CILE with potentiostatic method. The fabricated Ag/GR/CILE was used as a new platform for protein electrochemistry and hemoglobin (Hb) was immobilized on its surface with chitosan (CTS) as film forming material. In 0.1 mol/L phosphate buffer solution, a pair of well‐defined and quasi‐reversible redox peaks appeared on the CTS/Hb/Ag/GR/CILE with a formal peak potential of ?0.202 V (vs. SCE) and a peak‐to‐peak separation (ΔEp) of 68 mV, which indicated that direct electrochemistry of Hb was realized on the modified electrode. The results could be attributed to the synergistic effects of Ag NPs and GR nanosheets on the electrode surface, which provided a specific three‐dimensional structure with high conductivity and good biocompatibility. The Hb modified electrode showed excellent electrocatalysis to the reduction of trichloroacetic acid in the concentration range from 0.8 to 22.0 mmol/L with a detection limit of 0.42 mmol/L (3σ). Moreover, the modified electrode exhibited favorable reproducibility, long term stability and accuracy, with potential applications in the third‐generation electrochemical biosensor.  相似文献   

12.
In this paper two kinds of ionic liquids (ILs) were used for the construction of a myoglobin (Mb) electrochemical biosensor. Firstly a hydrophilic ionic liquid of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) was used as binder to prepare a carbon ionic liquid electrode (CILE), then a Nafion and hydrophobic ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) composite film was applied on the surface of the CILE. The direct electrochemistry of Mb in the Nafion‐BMIMPF6/CILE was achieved with the cathodic and anodic peak potentials located at ?0.345 V and ?0.213 V (vs. SCE). The formal potential (E°′) was located at ?0.279 V, which was the characteristic of Mb FeIII/FeII redox couples. The electrochemical behaviors of Mb in the Nafion‐ionic liquid composite film modified CILE were carefully investigated. The Mb modified electrode showed good electrocatalytic behaviors to the reduction of trichloroacetic acid (TCA) and NaNO2. Based on the Nafion‐BMIMPF6/Mb/CILE, a new third generation reagentless biosensor was constructed.  相似文献   

13.
A new carbon ionic liquid paste bioelectrode was fabricated by mixing hemoglobin (Hb) with graphite powder, ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) and liquid paraffin homogeneously. Nafion film was cast on the electrode surface to improve the stability of bioelectrode. Direct electrochemistry of Hb in the bioelectrode was carefully investigated. Cyclic voltammetric results indicated that a pair of well‐defined and quasi‐reversible electrochemical responses appeared in pH 7.0 phosphate buffer solution (PBS), indicating that direct electron transfer of Hb was realized in the modified electrode. The formal potential (E0′) was calculated as ?0.316 V (vs. SCE), which was the typical characteristic of the electrochemical reaction of heme Fe(III)/Fe(II) redox couple. Based on the cyclic voltammetric results the electrochemical parameters of the electrode reaction were calculated. This bioelectrode showed high electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) with good stability and reproducibility.  相似文献   

14.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

15.
A new hemoglobin (Hb) and carbon nanotube (CNT) modified carbon paste electrode was fabricated by simply mixing the Hb, CNT with carbon powder and liquid paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of the Hb‐CNT composite paste electrode. The modified electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Direct electrochemistry of hemoglobin in this paste electrode was easily achieved and a pair of well‐defined quasi‐reversible redox peaks of a heme Fe(III)/Fe(II) couple appeared with a formal potential (E0′) of ?0.441 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical behaviors of Hb in the composite electrode were carefully studied. The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2 and trichloroacetic acid (TCA), which shows potential applications in third generation biosensors.  相似文献   

16.
In this paper Cu3Mo2O9 nanosheet was prepared by a hydrothermal method and further used to investigate the direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode (CILE) as the substrate electrode. Hb was mixed with Cu3Mo2O9 nanosheet and cast on the CILE surface with chitosan (CTS) as the film-forming material. UV-vis and FT-IR spectroscopic results showed that Hb remained in its native structure in the composite film. Direct electron transfer of Hb on the modified electrode was realized with a pair of well-defined quasi-reversible redox waves that appeared on cyclic voltammograms. The redox peak potential appeared at ?0.252 V (E pc) and ?0.141 V (E pa), respectively, with the formal peak potential calculated as ?0.196 V, which was the characteristic of electroactive center of Hb heme Fe(III)/Fe(II). The result could be attributed to the presence of Cu3Mo2O9 nanosheet on the electrode surface that was of benefit for the protein orientation and promoted direct electron transfer between the redox active center of Hb and the substrate electrode. The CTS/Cu3Mo2O9–Hb/CILE showed good electrocatalytic ability in reducing different substrates such as trichloroacetic acid, H2O2 and O2, with wider linear range and lower detection limit, thus exhibiting the potential application of the Cu3Mo2O9 nanosheet in third-generation electrochemical biosensors.  相似文献   

17.
In this paper NiMoO4 nanorods were synthesized and used to accelerate the direct electron transfer of hemoglobin (Hb). By using an ionic liquid (IL) 1‐butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE) as the basic electrode, NiMoO4 nanorods and Hb composite biomaterial was further cast on the surface of CILE and fixed by chitosan (CTS) to establish a modified electrode denoted as CTS/NiMoO4‐Hb/CILE. UV‐vis and FT‐IR spectroscopic results showed that Hb in the film retained its native structures without any conformational changes. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with a pair of well‐defined and quasi‐reversible redox voltammetric peaks appearing in phosphate buffer solution (PBS, pH 3.0), which was attributed to the direct electrochemistry of the electroactive center of Hb heme Fe(III)/Fe(II). The results were ascribed to the specific characteristic of NiMoO4 nanorods, which accelerated the direct electron transfer rate of Hb with the underlying CILE. The electrochemical parameters of Hb in the composite film were further carefully calculated with the results of the electron transfer number (n) as 1.08, the charge transfer coefficient (α) as 0.39 and the electron‐transfer rate constant (ks) as 0.82 s?1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid (TCA) in the concentration range from 0.2 to 26.0 mmol/L with a detection limit of 0.072 mmol/L (3σ), and H2O2 in the concentration range from 0.1 to 426.0 µmol/L with a detection limit of 3.16×10?8 mol/L (3σ).  相似文献   

18.
In recent years the direct electron transfer of redox protein on electrode surface has attracted great attentions1. Different kind of modified electrode and various supporting films for immobilization of proteins had been proposed. But most of them are ba…  相似文献   

19.
Multilayers of myoglobin (Mb) with ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4) was assembled on carbon ionic liquid electrode (CILE) based on the electrostatic attraction between the negatively charged Mb and the positively charged imidazolium ion of IL. The CILE was fabricated with 1‐ethyl‐3‐methylimidazolium ethylsulfate ([EMIM]EtOSO3) as the modifier, which exhibited imidazolium ion on the electrode surface. Then Mb molecules were assembled on the surface of CILE step‐by‐step to get a {IL/Mb}n multilayer film modified electrode. UV‐Vis adsorption and FT‐IR spectra indicated that Mb remained its native structure in the IL matrix. In deaerated phosphate buffer solution (pH 7.0) a pair of well‐defined quasi‐reversible redox peaks appeared with the apparent formal potential (E0′) as ‐0.212 V (vs. SCE), which was the characteristic of Mb heme Fe(III)/Fe(II) redox couples. The results indicated that the direct electron transfer of Mb was realized on the modified electrode. The {IL/Mb}n/CILE displayed excellent electrocatalytic ability to the trichloroacetic acid reduction in the concentration range from 2.0 to 22.0 mmol/L with the detection limit of 0.6 mmol/L (3σ). The proposed method provides a new platform to fabricate the third generation biosensor based on the self‐assembly of redox protein with ILs.  相似文献   

20.
By one‐step co‐electrodeposition CaCO3 nanoparticles‐chitosan composite film on carbon ionic liquid electrode (CILE), and then by spreading the composition of hemoglobin (Hb) and chitosan on the nanoCaCO3‐chi/CILE, a Hb‐chi/nanoCaCO3‐chi/CILE was fabricated and the direct electrochemistry and electrocatalysis of Hb at the electrode was investigated. The electrochemical impedance spectroscopy of the modified electrode showed the electron transfer resistance was 1166 Ω. Investigation results of cyclic voltammetrys showed a pair of well‐defined and quasireversible redox peak of Hb with the formal potentials of ‐0.295 V (vs. SCE) in 0.1 mol·L‐1 pH 7.0 PBS; the response time of the reduction peak currents of Hb was lower than 3s; a linear range for determination of H2O2 was from 5.0 μmol·L‐1 to 1.3 mmol·L‐1 with a detection limit of 1.6 μmol·L‐1 (S/N = 3) and a sensitivity of 0.16 A·M‐1·cm‐2; the electron transfer rate constant and the apparent Michaelis‐Menten constant of Hb were 1.98 s‐1 and 0.81 mmol·L‐1, respectively. As a result, the case of the one‐step co‐electrodeposition and the promising feature of biocomposite could serve as a versatile platform for the fabrication of electrochemical biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号