首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Terpenes are a group of phytocompounds that have been used in medicine for decades owing to their significant role in human health. So far, they have been examined for therapeutic purposes as antibacterial, anti-inflammatory, antitumoral agents, and the clinical potential of this class of compounds has been increasing continuously as a source of pharmacologically interesting agents also in relation to topical administration. Major difficulties in achieving sustained delivery of terpenes to the skin are connected with their low solubility and stability, as well as poor cell penetration. In order to overcome these disadvantages, new delivery technologies based on nanostructures are proposed to improve bioavailability and allow controlled release. This review highlights the potential properties of terpenes loaded in several types of lipid-based nanocarriers (liposomes, solid lipid nanoparticles, and nanostructured lipid carriers) used to overcome free terpenes’ form limitations and potentiate their therapeutic properties for topical administration.  相似文献   

3.
Brucea javanica oil (BJO) is widely used in traditional Chinese medicine to treat various types of cancer and inflammatory diseases. There is significant interest in understanding the medicinal activities of BJO and its molecular components, especially quassinoids, and in exploring how they can be incorporated into nanomedicine delivery strategies for improved application prospects. Herein, we cover the latest progress in developing different classes of drug delivery vehicles, including nanoemulsions, liposomes, nanostructured lipid carriers, and spongosomes, to encapsulate BJO and purified quassinoids. An introduction to the composition and medicinal activities of BJO and its molecular components, including quassinoids and fatty acids, is first provided. Application examples involving each type of drug delivery vehicle are then critically presented. Future opportunities for nanomedicine delivery strategies in the field are also discussed and considered within the context of translational medicine needs and drug development processes.  相似文献   

4.
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.  相似文献   

5.
6.
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords “SOD”, “SOD mimetics”, “SOD supplementation”, which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.  相似文献   

7.
Antiviral action of various photosensitizers is already summarized in several comprehensive reviews, and various mechanisms have been proposed for it. However, a critical consideration of the matter of the area is complicated, since the exact mechanisms are very difficult to explore and clarify, and most publications are of an empirical and “phenomenological” nature, reporting a dependence of the antiviral action on illumination, or a correlation of activity with the photophysical properties of the substances. Of particular interest is substance-assisted photogeneration of highly reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-spectrum antivirals against enveloped viruses. In this short review, we want to point out the main types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the data on new compounds over the past three years. Further understanding of the data in the field will spur a targeted search for substances with antiviral activity against enveloped viruses among photosensitizers able to bind to the lipid membranes.  相似文献   

8.
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.  相似文献   

9.
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.  相似文献   

10.
Multifunctional drug delivery systems enabling effective drug delivery and comprehensive treatment are critical to successful cancer treatment. Overcoming nonspecific release and off-target effects remains challenging in precise drug delivery. Here, we design triple-interlocked drug delivery systems to perform specific cancer cell recognition, controlled drug release and effective comprehensive therapy. Gold nanocages (AuNCs) comprise a novel class of nanostructures possessing hollow interiors and porous walls. AuNCs are employed as a drug carrier and photothermal transducer due to their unique structure and photothermal properties. A smart triple-interlocked I-type DNA nanostructure is modified on the surface of the AuNCs, and molecules of the anticancer drug doxorubicin (DOX) are loaded as molecular cargo and blocked. The triple-interlocked nanostructure can be unlocked by binding with three types of tumor-related mRNAs, which act as “keys” to the triple locks, sequentially, which leads to precise drug release. Additionally, fluorescence-imaging-oriented chemical–photothermal synergistic treatment is achieved under illumination with infrared light. This drug delivery system, which combines the advantages of AuNCs and interlocked I-type DNA, successfully demonstrates effective and precise imaging, drug release and photothermal therapy. This multifunctional triple-interlocked drug delivery system could be used as a potential carrier for effective cancer-targeting comprehensive chemotherapy and photothermal therapy treatments.

Schematic illustration of the multiple-mRNA-controlled and heat-driven drug release from gold nanocages.  相似文献   

11.
The efficacious delivery of therapeutic nucleic acids to cancer still remains an open issue. Through the years, several strategies are developed for the encapsulation of genetic molecules exploiting different materials, such as viral vectors, lipid nanoparticles (LNPs), and polymeric nanoparticles (NPs). Indeed, the rapid approval by regulatory authorities and the wide use of LNPs complexing the mRNA coding for the spark protein for COVID-19 vaccination paved the way for the initiation of several clinical trials exploiting lipid nanoparticles for cancer therapy. Nevertheless, polymers still represent a valuable alternative to lipid-based formulations, due to the low cost and the chemical flexibility that allows for the conjugation of targeting ligands. This review will analyze the status of the ongoing clinical trials for cancer therapy, including vaccination and immunotherapy approaches, exploiting polymeric materials. Among those nanosized carriers, sugar-based backbones are an interesting category. A cyclodextrin-based carrier (CALAA-01) is the first polymeric material to enter a clinical trial complexed with siRNA for cancer therapy, and chitosan is one of the most characterized non-viral vectors able to complex genetic material. Finally, the recent advances in the use of sugar-based polymers (oligo- and polysaccharides) for the complexation of nucleic acids in advanced preclinical stage will be discussed.  相似文献   

12.
近年来, 大量研究结果表明纳米技术可显著提高传统药物的疾病治疗效果, 并在生物医学领域引起了广泛关注. 迄今, 多种聚合物纳米体系已被研发并用于药物的靶向递送. 随着纳米技术的不断发展, 各类生物微环境响应的功能基团也被应用于构筑新型药物载体, 以提高患病部位的药物富集及减少药物的毒副作用. 聚合物纳米药物载体在癌症治疗、 代谢类疾病治疗及抗菌等方面展现出巨大潜力. 本文系统评述了聚合物纳米药物载体的最新研究进展及在生物医药方面的应用.  相似文献   

13.
The rapid spread of the new Coronavirus Disease 2019 (COVID-19) has actually become the newest challenge for the healthcare system since, to date, there is not an effective treatment. Among all drugs tested, Hydroxychloroquine (HCQ) has attracted significant attention. This systematic review aims to analyze preclinical and clinical studies on HCQ potential use in viral infection and chronic diseases. A systematic search of Scopus and PubMed databases was performed to identify clinical and preclinical studies on this argument; 2463 papers were identified and 133 studies were included. Regarding HCQ activity against COVID-19, it was noticed that despite the first data were promising, the latest outcomes highlighted the ineffectiveness of HCQ in the treatment of viral infection. Several trials have seen that HCQ administration did not improve severe illness and did not prevent the infection outbreak after virus exposure. By contrast, HCQ arises as a first-line treatment in managing autoimmune diseases such as rheumatoid arthritis, lupus erythematosus, and Sjögren syndrome. It also improves glucose and lipid homeostasis and reveals significant antibacterial activity.  相似文献   

14.
Viral infections occur at very different length and time scales and include various processes, which can often be described using the models developed and/or employed in colloid and interface science. Bearing in mind the currently active COVID-19, I discuss herein the models aimed at viral transmission via respiratory droplets and the contact of virions with the epithelium. In a more general context, I outline the models focused on penetration of virions via the cellular membrane, initial stage of viral genome replication, and formation of viral capsids in cells. In addition, the models related to a new generation of drug delivery vehicles, for example, lipid nanoparticles with size about 100–200 nm, are discussed as well. Despite the high current interest in all these processes, their understanding is still limited, and this area is open for new theoretical studies.  相似文献   

15.
Interleukin-6 (IL-6) plays a crucial role in host defense against infection and tissue injuries and is a bioindicator of multiple distinct types of cytokine storms. In this review, we present the current understanding of the diverse roles of IL-6, its receptors, and its signaling during acute severe systemic inflammation. IL-6 directly affects vascular endothelial cells, which produce several types of cytokines and chemokines and activate the coagulation cascade. Endothelial cell dysregulation, characterized by abnormal coagulation and vascular leakage, is a common complication in cytokine storms. Emerging evidence indicates that a humanized anti-IL-6 receptor antibody, tocilizumab, can effectively block IL-6 signaling and has beneficial effects in rheumatoid arthritis, juvenile systemic idiopathic arthritis, and Castleman’s disease. Recent work has also demonstrated the beneficial effect of tocilizumab in chimeric antigen receptor T-cell therapy-induced cytokine storms as well as coronavirus disease 2019 (COVID-19). Here, we highlight the distinct contributions of IL-6 signaling to the pathogenesis of several types of cytokine storms and discuss potential therapeutic strategies for the management of cytokine storms, including those associated with sepsis and COVID-19.Subject terms: Sepsis, Interleukins  相似文献   

16.
《中国化学快报》2023,34(2):107518
Decades have passed since the first nanoparticles-base medicine was approved for human cancer treatment, and the research and development of nanoparticles for drug delivery are always undergoing. Nowadays, the significant advances complicate nanoparticles’ branches, including liposomes, solid lipid nanoparticles, inorganic nanoparticles, micelles, nanovaccines and nano-antibodies, etc. These nanoparticles show numerous capabilities in treatment and diagnosis of stubborn diseases like cancer and neurodegenerative diseases, emerging as novel drug carriers or therapeutic agents in future. In this review, the complicated branches of nanoparticles are classified and summarized, with their property and functions concluded. Besides, there are also some delivery strategies that make nanoparticles smarter and more efficient in drug delivery, and frontiers in these strategies are also summarized in this review. Except these excellent works in newly-produced drug delivery nanoparticles, some points of view and future expectations are made in the end.  相似文献   

17.
Polymer-based nanotechnologies are now proposed as an alternative to classical formulations for drug administration, delivery and targeting. Therapeutic applications of the first generation of nanotechnologies include the treatment of cancer liver diseases. Avoiding the recognition by the liver is also possible by developing long circulating polymeric colloidal carriers (“stealth” systems) able to avoid the opsonization process and the recognition by the macrophages. The design of such carriers of second generation is based on the physico-chemical concept of the “steric repulsion”: by grafting polyethyleneglycol chains at the surface of nanoparticles, the adsorption of seric proteins may be dramatically reduced due to steric hindrance. Such an approach allows maintaining the drug carrier for a longer time into the circulation and the resulting extravasation towards non reticuloendothelial-located cancers may become possible. Now, new applications and exciting perspectives are proposed for the delivery of drugs to previously non accessible diseased sanctuaries, like the brain (treatment of glioma and autoimmune diseases of the brain) or the ocular tissues (treatment of the autoimmune uveitis). Finally, the use of nanotechnologies for the delivery of nucleic acids (oligonucleotides) is also discussed in this review.  相似文献   

18.
Lipid membranes are common to all forms of life. While being stable barriers that delimitate the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most abundant fundamental fabrics of membranes—lipids and complex sugars—are produced through elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas of membrane glycobiology research and its application to biomedicine. For this Special Issue on Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study endocytic functions of glycosylated proteins and lipids according to the GlycoLipid–Lectin (GL–Lect) hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy and tumor targeting. It will be pointed out how the chemical biologist’s view on lipids, sugars, and proteins synergizes with biophysics and modeling to “look” into the membrane for atomistic scale insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of clathrin-independent endocytosis.  相似文献   

19.
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the “hybrid strategy”, namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term “hybrid” has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.  相似文献   

20.
Low levels of micronutrients have been associated with adverse clinical outcomes during viral infections. Therefore, to maximize the nutritional defense against infections, a daily allowance of vitamins and trace elements for malnourished patients at risk of or diagnosed with coronavirus disease 2019 (COVID-19) may be beneficial. Recent studies on COVID-19 patients have shown that vitamin D and selenium deficiencies are evident in patients with acute respiratory tract infections. Vitamin D improves the physical barrier against viruses and stimulates the production of antimicrobial peptides. It may prevent cytokine storms by decreasing the production of inflammatory cytokines. Selenium enhances the function of cytotoxic effector cells. Furthermore, selenium is important for maintaining T cell maturation and functions, as well as for T cell-dependent antibody production. Vitamin C is considered an antiviral agent as it increases immunity. Administration of vitamin C increased the survival rate of COVID-19 patients by attenuating excessive activation of the immune response. Vitamin C increases antiviral cytokines and free radical formation, decreasing viral yield. It also attenuates excessive inflammatory responses and hyperactivation of immune cells. In this mini-review, the roles of vitamin C, vitamin D, and selenium in the immune system are discussed in relation to COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号