首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We report on theoretical and experimental investigations of a novel hysteresis effect that has been observed on the magnetoresistance of quantum Hall bilayer systems. Extending to these system a recent approach, based on the Thomas–Fermi–Poisson nonlinear screening theory and a local conductivity model, we are able to explain the hysteresis as being due to screening effects such as the formation of “incompressible strips”, which hinder the electron density in a layer within the quantum Hall regime to reach its equilibrium distribution.  相似文献   

2.
A method is worked out for calculation of an “instantaneous” energy distribution of the ionization-passive electrons and holes resulting from the electron-electron collisions before the onset of electron-phonon relaxation under 10−15–10−14 s irradiation of a dielectric by an intense electron or laser beam. The method is based on the solution of a system of integral-differential kinetic equations of general form. The Auger and impact ionization as well as hole recoil due to the momentum conservation law are taken into account in calculations. The “instantaneous” distribution is calculated in NaCl under irradiation of the sample by a high-density electron beam. The “instantaneous” distribution of ionization-passive electrons and holes is the initial one in solutions of all kinetic equations describing further relaxation of electron excitations in irradiated materials.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 15–22, November, 2004.  相似文献   

3.
In this paper we describe a three-dimensional (3D) continuous wave (CW) diffuse optical tomography (DOT) system and present 3D volumetric reconstruction studies using this DOT system with simple phantom models that simulate hand joints. The CCD-based DOT system consists of 64×64 source/detector fiber optic channels, which are arranged in four layers, forming a cylindrical fiber optic/tissue interface. Phantom experiments are used to evaluate system performance with respective to axial spatial resolution, optical contrast and target position for detection of osteoarthritis where cartilage is the primary target region of interest. These phantom studies suggest that we are able to quantitatively resolve a 2 mm thick “cartilage” and qualitatively resolve a 1 mm thick “cartilage” using our 3D reconstruction approach. Our results also show that optical contrast of 3:1–7:1 between the “disease cartilage” and normal cartilage can be quantitatively recovered. Finally, the target position along axial direction on image reconstruction is studied. All the images are obtained using our 3D finite-element-based reconstruction algorithm.  相似文献   

4.
Pierre-Henri Chavanis  Clment Sire 《Physica A》2008,387(16-17):4033-4052
We perform a linear dynamical stability analysis of a general hydrodynamic model of chemotactic aggregation [P.H. Chavanis, C. Sire, Physica A 384 (2007) 199]. Specifically, we study the stability of an infinite and homogeneous distribution of cells against “chemotactic collapse”. We discuss the analogy between the chemotactic collapse of biological populations and the gravitational collapse (Jeans instability) of self-gravitating systems. Our hydrodynamic model involves a pressure force which can take into account several effects like anomalous diffusion or the fact that the organisms cannot interpenetrate. We also take into account the degradation of the chemical which leads to a shielding of the interaction like for a Yukawa potential. Finally, our hydrodynamic model involves a friction force which quantifies the importance of inertial effects. In the strong friction limit, we obtain a generalized Keller–Segel model similar to the generalized Smoluchowski–Poisson system describing self-gravitating Langevin particles. For small frictions, we obtain a hydrodynamic model of chemotaxis similar to the Euler–Poisson system describing a self-gravitating barotropic gas. We show that an infinite and homogeneous distribution of cells is unstable against chemotactic collapse when the “velocity of sound” in the medium is smaller than a critical value. We study in detail the linear development of the instability and determine the range of unstable wavelengths, the growth rate of unstable modes and the damping rate, or the pulsation frequency, of the stable modes as a function of the friction parameter and shielding length. For specific equations of state, we express the stability criterion in terms of cell density.  相似文献   

5.
The idea of “common path” has been widely applied in optical instrument design for 30 years and even today. But the meaning of “common path” has not yet been explained clearly and sometimes confusion has been created. In this paper an “adaptive principle” is proposed and recommended on optical instrument system. It suggests that the designer not only arranges the measurement system to obtain measurement signal but also sets a channel to give prediction of noise or disturbance in real time or short term. Such a recommendation is based on the recent studies on nonlinear dynamics and atmospheric disturbance by means of experiments as well as theoretical analysis.  相似文献   

6.
Jian-Zu Zhang   《Annals of Physics》2009,324(9):1847-1854
Noncommutative Chern–Simons’ system is non-perturbatively investigated at a full deformed level. A deformed “commutative” phase space is found by a non-canonical change between two sets of deformed variables of noncommutative space. It is explored that in the “commutative” phase space all calculations are similar to the case in commutative space. Spectra of its energy and angular momentum of the Chern–Simons’ system are obtained at the full deformed level. The noncommutative–commutative correspondence is clearly showed. Formalism for the general dynamical system is briefly presented. Some subtle points are clarified.  相似文献   

7.
Using spatially modulated illumination (SMI) light microscopy it is possible to measure the sizes of fluorescent structures that have an extension far below the conventional optical resolution limit (“subresolution size”). Presently, the sizes are determined as the object extension along the optical axis of the SMI microscope. For this, however, “a priori” assumptions on the fluorochrome distribution (“shape”) within the examined fluorescent structure have to be made. Usually it is assumed that the fluorochrome follows a Gauss-distribution or a spherical distribution. In this report we overcome the necessity to make an assumption on the shape of the fluorochrome distribution. We introduce two new experimentally obtained parameters which allow the determination of a shape measure to describe the spatial distribution of the fluorescent dye. This becomes possible by independent measurements with different excitation wavelengths. As an example, we present shape parameter measurements on individual fluorescent microspheres with a nominal geometrical diameter (“size”) of 190 nm. In the case investigated, the experimental shape correlated well with a homogeneous fluorochrome distribution (“spherical shape”) but not with a variety of other “shapes”.  相似文献   

8.
We explore methods to locate subcritical branches of spatially periodic solutions in pattern forming systems with a nonlinear finite-wavelength instability. We do so by means of a direct expansion in the amplitude of the linearly least stable mode about the appropriate reference state which one considers. This is motivated by the observation that for some equations fully nonlinear chaotic dynamics has been found to be organized around periodic solutions that do not simply bifurcate from the basic (laminar) state. We apply the method to two model equations, a subcritical generalization of the Swift–Hohenberg equation and a novel extension of the Kuramoto–Sivashinsky equation that we introduce to illustrate the abovementioned scenario in which weakly chaotic subcritical dynamics is organized around periodic states that bifurcate “from infinity” and that can nevertheless be probed perturbatively. We explore the reliability and robustness of such an expansion, with a particular focus on the use of these methods for determining the existence and approximate properties of finite-amplitude stationary solutions. Such methods obviously are to be used with caution: the expansions are often only asymptotic approximations, and if they converge their radius of convergence may be small. Nevertheless, expansions to higher order in the amplitude can be a useful tool to obtain qualitatively reliable results.  相似文献   

9.
We present a phenomenological theory of the homogeneous orbital dynamics of the class of “separable” anisotropic superfluid phases which includes the ABM state generally identified with 3He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the “pseudo-angular momentum” of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the “superfluid spin” Sp. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (“normal locking”), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies irrespective of the value of ωτ. (Δ = gap parameter, τ = quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the “gapless” region very close to Tc.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an “orbital susceptibility of the Cooper pairs” χorb(T). We give a possible microscopic definition of the variable K and use it to calculate χorb(T) for a general phase of the “separable” type. The theory is checked by inserting the resulting formula in the phenomenological equations for ωτ 1 and comparing with the results of a fully microscopic calculation based on the collisionless kinetic equation; precise agreement is obtained for both the ABM and the (real) polar phase, showing that the complex nature of the ABM phase and the associated “pair angular momentum” is largely irrelevant to its orbital dynamics. We note also that the phenomenological theory gives a good qualitative picture even when ω Δ(T), e.g., for the flapping mode near Tc. Our theory permits a simple and unified calculation of (1) the Cross-Anderson viscous torque in the overdamped regime, (2) the flapping-mode frequency near zero temperature, (3) orbital effects on the NMR, both at low temperatures and near Tc, (4) the orbit wave spectrum at zero temperature (this requires a generalization to inhomogeneous situations which is possible at T = 0 but probably not elsewhere). We also discuss the possibility of experiments of the Einstein-de Haas type. Generally speaking, our results for any one particular application can be also obtained from some alternative theory, but in the case of orbital and spin relaxation very close to Tc (within the “gapless” region) our predictions, while somewhat tentative and qualitative, appear to disagree with those of all existing theories. We discuss briefly how our approach could be extended to apply to more general phases.  相似文献   

10.
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe–flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material “evaporation and transportation”, “transformation”, “nucleation”, “initial growth”, “intermediate growth”, and “final growth”. XRD analysis shows that the chemical compositions of all structures correspond to MoO2.  相似文献   

11.
The “pre-processing” procedure and the “break-point” analysis developed in a previous work based on the ADO (analytical discrete ordinates) method are used, along with a nascent delta function to describe the polar-angle dependence of an incident beam, to solve the classical albedo problem for radiative transfer in a plane-parallel, multi-layer medium subject to Fresnel boundary and interface conditions. As a result of the use of a nascent delta function, rather than the Dirac distribution, to model the polar-angle dependence of the incident beam, the computational work is significantly simplified (since a particular solution is not required) in comparison to an approach where both the polar-angle and the azimuthal-angle dependence of the incident beam are formulated in terms of Dirac delta distributions. The numerical results from this approach are (when a sufficiently small “narrowness” parameter is used to define the nascent delta) found to be in complete agreement with already reported (high-quality) results for a set of challenging multi-layer problems.  相似文献   

12.
Detonability limits in thin annular channels   总被引:3,自引:0,他引:3  
In this paper, detonability limits in two-dimensional annular channels are investigated. Since the channel heights are small in comparison to the tube diameter, curvature effects can be neglected and the annular channels can be considered to be essentially two-dimensional. Mixtures that are highly diluted with argon are used since previous investigations seem to indicate that detonations in such mixtures are “stable” in that cellular instabilities play minor roles on the propagation of the detonation. For stable detonations where the ZND structure is valid, boundary layer effects can be modeled as a flow divergence term in the conservation of mass equation following the pioneering work of Fay [J.A. Fay, Phys. Fluids 2(3) (1959) 283–289]. Expansion due to flow divergence in the reaction zone results in a velocity deficit. There exists a maximum deficit when an eigenvalue detonation velocity can no longer be found, which can be taken as the onset of the detonability limits. Experimentally, it was found that unlike “unstable” detonations, the detonability limits for “stable” detonations are well-defined. No unstable near-limit phenomena (e.g., galloping detonations) was observed. Good agreement is found between the theoretical predictions and the experimentally obtained velocity deficits and limits in the two channel heights of 2.2 and 6.9 mm for hydrogen–oxygen and acetylene–oxygen mixtures diluted with over 50% argon. It may be concluded that at least for these special mixtures where the detonation is “stable,” the failure mechanism is due to flow divergence caused by the negative displacement thickness of the boundary layer behind the leading shock front of the detonation wave.  相似文献   

13.
We show that the K–K spectrum of IIB string on is described by “twisted chiral” superfields, naturally described in “harmonic superspace”, obtained by taking suitable gauge singlets polynomials of the D3-brane boundary superconformal field theory.To each p-order polynomial is associated a massive K–K short representation with states. The quadratic polynomial corresponds to the “supercurrent multiplet” describing the “massless” bulk graviton multiplet.  相似文献   

14.
Assuming that an original distribution is a probabilistic measure and the Laplace transforms are known only for a finite number of points that are affected by errors, we develop a method for reconstructing weak-sense mean values obtained by integrating smooth functions with the measure. Our method is useful in NMR if the NMR signal can be represented as a superposition of exponential terms. In these circumstances, we show how the data processing can be related to the classical Hausdorf momentum problem. First, we clarify the meaning of stable spectrum reconstruction, and then develop stable filtering and a mean value reconstruction algorithm. Our method has been tested on both simulated and real sets of spin–spin relaxation curves with noise. In view of this, our method could provide an efficient and accurate reconstruction of spin–spin relaxation data. For any reader interested in applications, a “practical recipe” that is almost self-consistent has been included.  相似文献   

15.
A new approach to the theory of temporal aberration for cathode lenses is given in the present paper. A definition of temporal aberration is given in which a certain initial energy of electron emission along the axial direction εz1 (0εz1ε0max) is considered. A new method to calculate the temporal aberration coefficients of cathode lenses named “direct integral method” is also presented. The “direct integral method” gives new expressions of the temporal aberration coefficients which are expressed in integral forms. The difference between “direct integral method” and “τ-variation method” is that the “τ-variation method” needs to solve the differential equations for the three of temporal geometrical aberration coefficients of second order, while the “direct integral method” only needs to carry out the integral calculation for all of these temporal aberration coefficients of second order.All of the formulae of the temporal aberration coefficients deduced from “direct integral method” and “τ-variation method” have been verified by an electrostatic concentric spherical system model, and contrasted with the analytical solutions. Results show that these two methods have got identical solutions and the solutions of temporal aberration coefficients of the first and second order are the same as with the analytical solutions. Although some forms of the results seem different, but they can be transformed into the same form. Thus, it can be concluded these two methods given by us are equivalent and correct, but the “direct integral method” is related to solve integral equations, which is more convenient for computation and could be suggested for use in practical design.  相似文献   

16.
Market Mill is a complex dependence pattern leading to nonlinear correlations and predictability in intraday dynamics of stock prices. The present paper puts together previous efforts to build a dynamical model reflecting the market mill asymmetries. We show that certain properties of the conditional dynamics at a single time scale such as a characteristic shape of an asymmetry-generating component of the conditional probability distribution result in the “elementary” market mill pattern. This asymmetry-generating component matches the empirical distribution obtained from the market data. Multiple time scale considerations make the resulting “composite” mill similar to the empirical market mill patterns. Multiscale model also reflects a multi-agent nature of the market. Interpretation of variations of asymmetry patterns of individual stocks in terms of specific deformations of the fundamental market mill asymmetry patterns is described.  相似文献   

17.
A study of the distribution of conductances, P(g), for quasi-one-dimensional (multichain) pseudorandom systems is here presented. We focus on the crossover between the metallic ( ) and the insulating (〈g〉∼0) regimes with reference to the case of “cosine” and “tangent” pseudorandom potentials. The results are compared with those obtained for the truly random disordered systems with the same geometry. A rich variety of shapes of P(g) is thus evidenced in the crossover-transport regime and, in the case of identical interacting chains composing the device, we have shown that the conductance distribution of the system can be obtained from the results for the single pseudorandom chain.  相似文献   

18.
Our recently proposed inertial transformations of the space and time variables based on absolute simultaneity imply the existence of a single isotropic inertial reference system (“privileged system”). We show, however, that aresynchronization of clocks in all inertial systems is possible leading to a different, arbitrarily chosen,isotropic “privileged” system. Such a resynchronization does not modify any one of the empirical consequences of the theory,which is thus compatible with a formulation of the relativity principle weaker than adopted in Einstein’s theory of special relativity.  相似文献   

19.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

20.
In a recent paper, a “distance” function, , was defined which measures the distance between pure classical and quantum systems. In this work, we present a new definition of a “distance”, D, which measures the distance between either pure or impure classical and quantum states. We also compare the new distance formula with the previous formula, when the latter is applicable. To illustrate these distances, we have used 2 × 2 matrix examples and two-dimensional vectors for simplicity and clarity. Several specific examples are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号