首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The subject of analysis is the bending of elastic plates exhibiting a nonhomogeneous periodic structure and/or a periodically variable thickness in a certain direction parallel to the plate's midplane. The fundamental modelling problem is how to obtain an effective 2D-model of a plate under consideration, i.e., a 2D-model represented by PDEs with constant coefficients. This problem for periodic plates has been solved independently in [5] and [10], using asymptotic homogenization. However, homogenization neglects dynamic phenomena related to the plate's rotational inertia and cannot be applied to the analysis of higher-order vibration frequences. The main aim of this contribution is to formulate a new non-asymptotic effective 2D-model of a periodic plate which is free from the mentioned drawbacks and describes the dynamic behaviour of plates having the thickness of the order of the period length. The proposed model is applied to the analysis of some vibration problems.  相似文献   

2.
Corrugated plates are widely used in modern constructions and structures, because they, in contrast to plane plates, possess greater rigidity. In many cases, such a plate can be modeled by a homogeneous anisotropic plate with certain effective flexural and tensional rigidities. Depending on the geometry of corrugations and their location, the equivalent homogeneous plate can also have rigidities of mutual influence. These rigidities allow one to take into account the influence of bending moments on the strain in the midplane and, conversely, the influence of longitudinal strains on the plate bending [1]. The behavior of the corrugated plate under the action of a load normal to the midsurface is described by equations of the theory of flexible plates with initial deflection. These equations form a coupled system of nonlinear partial differential equations with variable coefficients [2]. The dependence of the coefficients on the coordinates is determined by the corrugation geometry. In the case of a plate with periodic corrugation, the coefficients significantly vary within one typical element and depend on the values of local variables determined in each of the typical elements. There is a connection between the local and global variables, and therefore, the functions of local coordinates are simultaneously functions of global coordinates, which are sometimes called rapidly oscillating functions [3].One of the methods for solving the equations with rapidly oscillating coefficients is the asymptotic method of small geometric parameter. The standard procedure of this method usually includes preparatory stages. At the first stage, as a rule, a rectangular periodicity cell is distinguished to be a typical element. At the second stage, the scale of global coordinates is changed so that the rectangular structure periodicity cells became square cells of size l × l. The third stage consists in passing to the dimensionless global coordinates relative to the plate characteristic dimension L. As a result, the dependence between the new local variables and the new scaled dimensionless variables is such that the factor 1/α, where α=l/L ? 1 is a small geometric parameter, appears in differentiating any function of the local coordinate with respect to the global coordinate. After this, the solution of the problem in new coordinates is sought as an asymptotic expansion in the small geometric parameter [1], [4–10].We note that, in the small geometric parameter method, the asymptotic series simultaneously have the form of expansions in the gradients of functions depending only on the global coordinates. This averaging procedure can be applied to linear and nonlinear boundary value problems for differential equations with variable periodic coefficients for which the periodicity cell can be affinely transformed into the periodicity cube. In the case of an arbitrary dependence of the coefficients on the coordinates (including periodic dependence), another averaging technique can be used in linear problems. This technique is based on the possibility of the integral representation of the solution of the original problem for the linear equation with variables coefficients in terms of the solution of the same problem for an equation of the same type but with constant coefficients [11–13]. The integral representation implies that the solution of the original problem can be represented in the form of the series in the gradients of the solution of the problem for the equation with constant coefficients [13].The aim of the present paper is to develop methods for calculating effective characteristics of corrugated plates. To this end, we first write out the equilibrium equations for a flexible anisotropic plate, which is inhomogeneous in the thickness direction and in the horizontal projection, with an initial deflection. We write these equations in matrix form, which allows one to significantly reduce the length of the expressions and to simplify further calculations. After this, we average the initial matrix equations with variable coefficients. The averaging procedure implies the statement of problems such that, after solving them, we can calculate the desired effective characteristics. By way of example, we consider the case of a corrugated plate made of a homogeneous isotropic material whose corrugations are hexagonal in the horizontal projection. In this case, we obtain approximate expressions for the components of the effective tensors of flexural rigidity and longitudinal compliance and expressions for the effective plate thickness.  相似文献   

3.
In the design of electric machines, devices, and plasma generator bearing constructions, it is sometimes necessary to study the influence of magnetic fields on the vibration frequency spectra of thin-walled elements. The main equations of magnetoelastic vibrations of plates and shells are given in [1], where the influence of the magnetic field on the fundamental frequencies and vibration shapes is also studied. When studying the higher frequencies and vibration modes of plates and shells, it is very efficient to use Bolotin’s asymptotic method [2–4]. A survey of studies of its applications to problems of elastic system vibrations and stability can be found in [5, 6]. Bolotin’s asymptotic method was used to obtain estimates for the density of natural frequencies of shallow shell vibrations [3] and to study the influence of the membrane stressed state on the distribution of frequencies of cylindrical and spherical shells vibrations [7, 8]. In a similar way, the influence of the longitudinal magnetic field on the distribution of plate and shell vibration frequencies was studied [9, 10]. It was shown that there is a decrease in the vibration frequencies of cylindrical shells under the action of a longitudinal magnetic field, and the accumulation point of the natural frequencies moves towards the region of lower frequencies [10]. In the present paper, we study the influence of a transverse magnetic field on the distribution of natural frequencies of shallow cylindrical and spherical shells, obtain asymptotic estimates for the density of natural frequencies of shell vibrations, and compare the obtained results with the empirical numerical results.  相似文献   

4.
The present paper develops and implements finite element formulation for the asymptotic homogenization theory for periodic composite plate and shell structures, earlier developed in  and , and thus adopts this analytical method for the analysis of periodic inhomogeneous plates and shells with more complicated periodic microstructures. It provides a benchmark test platform for evaluating various methods such as representative volume approaches to calculate effective properties. Furthermore, the new numerical implementation (Cheng et al., 2013) of asymptotic homogenization method of 2D and 3D materials with periodic microstructure is shown to be directly applicable to predict effective properties of periodic plates without any complicated mathematical derivation. The new numerical implementation is based on the rigorous mathematical foundation of the asymptotic homogenization method, and also simplicity similar to the representative volume method. It can be applied easily using commercial software as a black box. Different kinds of elements and modeling techniques available in commercial software can be used to discretize the unit cell. Several numerical examples are given to demonstrate the validity of the proposed methods.  相似文献   

5.
The problem on the vibrations of a magnetoelastic ferromagnetic plate was studied in [1–5] from the viewpoint of the averaging approach, i.e., on the basis of the classical Kirchhoff hypothesis. In [6–10], a new approach proposed for elastic plates in [11] was used to derive dispersion relations for magnetoelastic plates. In [10], the 3D approach was used to obtain the ferromagnetic plate vibration frequencies; in the case of a transverse magnetic field, the equations of the perturbed motion of the plates were written out with the initial stresses taken into account [5, 12] but without considering the initial strains. In [13, 14], the problems on the vibrations of conducting plates in a magnetic field were studied.In the present paper, we derive the dispersion equations, which are asymptotic equations for small magnetic fields and exact equations for the initial stresses and strains related by Hooke’s law. The corresponding numerical computations are also performed.  相似文献   

6.
On dynamic behaviour of medium-thickness plates with uniperiodic structure   总被引:2,自引:0,他引:2  
Summary An averaging 2-D model of a rectangular plate with unidirectional microperiodic structure is presented in this paper. The approach is partly based on the results exposed in [7]. The model describes the length-scale effect, i.e. the influence of the size of microstructure on the overall dynamic plate behaviour. This effect has not yet been considered in the literature on asymptotic homogenized models of periodic plates. The equations of motion of the elastic plate are introduced according to the Hencky-Bolle assumptions. It is demonstrated that the dynamics of plates with unidirectional periodic structure cannot be treated as a specific case of those with bidirectional periodicity. A lower frequency of free vibrations of a linear - elastic plate band has been determined and compared with the numerical results obtained by the FEM, revealing the consistence of the proposed method. However, a higher free vibration frequency depends in this contribution on the length-scale and cannot be derived using the homogenized plate model.  相似文献   

7.
The problem of the stability of nonplane-parallel flows is one of the most difficult and least studied problems in the theory of hydrodynamic stability [1]. In contrast to the Heisenberg approximation [1], the basic state whose stability is investigated depends on several variables, and the stability problem reduces to the solution of an eigenvalue problem for partial differential equations in which the coefficients depend on several variables [2–7]. In the case of a periodic dependence of these coefficients on the time [2] or the spatial coordinates [3, 4], the analog of Floquet theory for the partial differential equations is constructed. With rare exceptions, the case of a nonperiodic dependence has usually been considered under the assumption of weak nonplane-parallelism, i.e., a fairly small deviation from the plane-parallel case has been assumed and the corresponding asymptotic expansions in the linear [6] and nonlinear [7] stability analyses considered. The present paper considers the case of an arbitrary dependence of the velocity profile of the basic flow on two spatial variables. The deviation from the plane-parallel case is not assumed to be small, and the corresponding eigenvalue problem for the partial differential equations is solved by means of the direct methods of [5], which were introduced for the first time and justified in the theory of hydrodynamic stability by Petrov [8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 21–28, May–June, 1987.  相似文献   

8.
The problem of stability and buckling of plates under creep conditions has been studied in the fundamental papers [1–4]. In the papers [5, 6], the theory of buckling of rods and plates is developed in the framework of the dominating bending model [7], where the forces in the midplane of the plate were determined independently of the solution of the bending problem. In what follows, we use the Karman scheme [8] to derive two basic differential equations of the coupled theory of the plane stress state and bending. We solve the problem of buckling of a rectilinear plate for linearly viscous (Newtonian) medium and show that the Karman scheme gives an essential correction to the solution of the bending problem for initial deflections comparable with the plate thickness.  相似文献   

9.
We study the reinforcement of an infinite elastic plate with a circular hole by a larger eccentric circular patch completely covering the hole and rigidly adjusted to the plate along the entire boundary of itself. We assume that the plate and the patch are in a generalized plane stress state generated by the action of some given loads applied to the plate at infinity and on the boundary of the hole. We use the power series method combined with the conformal mapping method to find the Muskhelishvili complex potentials and study the stress state on the hole boundary and on the adhesion line. We consider several examples, study how the stresses depend on the geometric and elastic parameters, and compare the problem under study with the case of a plate with a circular hole without a patch. In scientific literature, numerous methods for reinforcing plates with holes, in particular, with circular holes, have been studied. In the monographs [1, 2], the problem of reinforcing the hole edges by stiffening ribs is solved. Methods for reinforcing a circular hole by using two-dimensional patches pasted to the entire plate surface are studied in [3, 4]. The case of a plate with a circular cut reinforced by a concentric circular patch adjusted to the plate along the boundary of itself or along some other circle was studied in [5, 6]. The reinforcement of an elliptic hole by a confocal elliptic patch was considered in [7].  相似文献   

10.
Static and dynamic problems for the elastic plates and membranes periodically perforated by holes of different shapes are solved using the combination of the singular perturbation technique and the multi-scale asymptotic homogenization method. The problems of bending and vibration of perforated plates are considered. Using the asymptotic homogenization method the original boundary-value problems are reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. In the present paper the perforated plates with large holes are considered, and the singular perturbation method is used to solve the pertinent unit cell problems. Matching of limiting solutions for small and large holes using the two-point Padé approximants is also accomplished, and the analytical expressions for the effective stiffnesses of perforated plates with holes of arbitrary sizes are obtained.  相似文献   

11.
The paper deals with the homogenization of a boundary value problem for an inhomogeneous body with Cosserat properties, which is referred to as the original problem. The homogenization process is understood as a method for representing the solution of the original problem in terms of the solution of precisely the same problem for a body with homogeneous properties. The problem for a body with homogeneous properties is called the accompanying problem, and the body itself, the accompanying homogeneous body. As a rule, a constructive homogenization procedure includes the following three stages: at the first stage, the properties of the inhomogeneous body are used to find the properties of the accompanying homogeneous body (efficient properties); at the second stage, the boundary value problem is solved for the accompanying body; at the third stage, the solution of the accompanying problem is used to find the solution of the original problem. This approach was implemented in mechanics of composite materials constructed of numerous representative elements. A significant contribution to the development of mechanics of composites is due to Rabotnov [1–3] and his students. Recently, the homogenization method has been widely used to solve problems for composites of regular structure by expanding the solution of the original problem in a power series in a small geometric parameter equal to the ratio of the characteristic dimension of the periodicity cell to the characteristic dimension of the entire body. The papers by Bakhvalov [4–6] and Pobedrya [7] were the first in the field. At present, there are numerous monographs partially or completely dealing with the method of a small geometric parameter [8–14]. Isolated problems for inhomogeneous bodies with nonperiodic dependence of their properties on the coordinates were considered by many authors. Most of such papers published before 1973 are collected in two vast bibliographic indices [15, 16]. General methods were considered, and many specific problems of the theory of elasticity of continuously inhomogeneous bodies were solved in Lomakin’s papers and his monograph [17]. The theory of torsion of inhomogeneous anisotropic rods was considered in [18]. In 1991, in his Doctoral dissertation, one of the authors of this paper proposed a version of the homogenization method based on an integral formula representing the solution of the original static problem of inhomogeneous elasticity via the solution of the accompanying problem [19, 20]. An integral formula for the dynamic problem of elasticity was published somewhat later [21]. This integral formula was used to develop a constructive method for the homogenization of the dynamic problem of inhomogeneous elasticity, which can be used in the case of both periodic and nonperiodic inhomogeneity of the properties [22]. The integral formula in the case of the Cosserat theory of elasticity was published in [23]. The present paper briefly presents constructive methods for homogenizing the problems of the Cosserat theory of elasticity based on the integral formula.  相似文献   

12.
This paper describes a new procedure for the homogenization of orthotropic 3D periodic plates. The theory of Caillerie [Caillerie, D., 1984. Thin elastic and periodic plates. Math. Method Appl. Sci., 6, 159–191.] – which leads to a homogeneous Love–Kirchhoff model – is extended in order to take into account the shear effects for thick plates. A homogenized Reissner–Mindlin plate model is proposed. Hence, the determination of the shear constants requires the resolution of an auxiliary 3D boundary value problem on the unit cell that generates the periodic plate. This homogenization procedure is then applied to periodic brickwork panels.A Love–Kirchhoff plate model for linear elastic periodic brickwork has been already proposed by Cecchi and Sab [Cecchi, A., Sab, K., 2002b. Out-of-plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A-Solids 21, 249–268 ; Cecchi, A., Sab, K., 2006. Corrigendum to A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork [Int. J. Solids Struct., vol. 41/9–10, pp. 2259–2276], Int. J. Solids Struct., vol. 43/2, pp. 390–392.]. The identification of a Reissner–Mindlin homogenized plate model for infinitely rigid blocks connected by elastic interfaces (the mortar thin joints) has been also developed by the authors Cecchi and Sab [Cecchi A., Sab K., 2004. A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork. Int. J. Solids Struct. 41/9–10, 2259–2276.]. In that case, the identification between the 3D block discrete model and the 2D plate model is based on an identification at the order 1 in the rigid body displacement and at the order 0 in the rigid body rotation.In the present paper, the new identification procedure is implemented taking into account the shear effect when the blocks are deformable bodies. It is proved that the proposed procedure is consistent with the one already used by the authors for rigid blocks. Besides, an analytical approximation for the homogenized shear constants is derived. A finite elements model is then used to evaluate the exact shear homogenized constants and to compare them with the approximated one. Excellent agreement is found. Finally, a structural experimentation is carried out in the case of masonry panel under cylindrical bending conditions. Here, the full 3D finite elements heterogeneous model is compared to the corresponding 2D Reissner–Mindlin and Love–Kirchhoff plate models so as to study the discrepancy between these three models as a function of the length-to-thickness ratio (slenderness) of the panel. It is shown that the proposed Reissner–Mindlin model best fits with the finite elements model.  相似文献   

13.
A large number of investigations have been carried out to study the aerodynamic characteristics of grids and permeable plates completely covering a pipe section [1]. The theoretical bases of the external aerodynamics of permeable bodies are established in [2], where the concept of a uniformly permeable surface is introduced and the problem of flow past a permeable plate at a small angle of attack is solved. Papers [3, 4] are devoted to the solution of problems of a jet flow of ideal incompressible fluid past a permeable wedge and a plate. The flow past a wedge with a high degree of permeability at low subsonic velocities was investigated theoretically and experimentally in [5]. Papers [6, 7] are devoted to the experimental investigation of the aerodynamic characteristics of plates and disks at low subsonic velocities. The results of the experimental investigations of permeable bodies are given in [8]. In the present paper the aerodynamic characteristics of permeable disks positioned perpendicular to the direction of the oncoming flow are investigated experimentally in a wide range of variation of the perforation parameters and the subsonic free-stream flow velocities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 123–128, July–August, 1986.  相似文献   

14.
The nonlinear problem of cavitation flow around a plate by a stream of heavy liquid is investigated in precise formulation; the plate is located on the horizontal floor of a channel when the gravity vector is directed perpendicular to the wall of the channel. Two flow systems are considered-Ryabushinskii's and Kuznetsov's system [1]. This problem was investigated in linear formulation in [2], Similar problems were considered earlier in [3–7] for unrestricted flow. Below, on the basis of a method proposed by Birkhoff [8, 9], all the principal hydrodynamic and geometric characteristics are calculated for the problem being considered.Translated from Ivestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–9, May–June, 1973.  相似文献   

15.
Andrea Bacigalupo 《Meccanica》2014,49(6):1407-1425
In this paper a second-order homogenization approach for periodic material is derived from an appropriate representation of the down-scaling that correlates the micro-displacement field to the macro-displacement field and the macro-strain tensors involving unknown perturbation functions. These functions take into account of the effects of the heterogeneities and are obtained by the solution of properly defined recursive cell problems. Moreover, the perturbation functions and therefore the micro-displacement fields result to be sufficiently regular to guarantee the anti-periodicity of the traction on the periodic unit cell. A generalization of the macro-homogeneity condition is obtained through an asymptotic expansion of the mean strain energy at the micro-scale in terms of the microstructural characteristic size ?; the obtained overall elastic moduli result to be not affected by the choice of periodic cell. The coupling between the macro- and micro-stress tensor in the periodic cell is deduced from an application of the generalised macro-homogeneity condition applied to a representative portion of the heterogeneous material (cluster of periodic cell). The correlation between the proposed asymptotic homogenization approach and the computational second-order homogenization methods (which are based on the so called quadratic ansätze) is obtained through an approximation of the macro-displacement field based on a second-order Taylor expansion. The form of the overall elastic moduli obtained through the two homogenization approaches, here proposed, is analyzed and the differences are highlighted. An evaluation of the developed method in comparison with other recently proposed in literature is carried out in the example where a three-phase orthotropic material is considered. The characteristic lengths of the second-order equivalent continuum are obtained by both the asymptotic and the computational procedures here analyzed. The reliability of the proposed approach is evaluated for the case of shear and extensional deformation of the considered two-dimensional infinite elastic medium subjected to periodic body forces; the results from the second-order model are compared with those of the heterogeneous continuum.  相似文献   

16.
ABSTRACT

Application of the Galerkin method to various fluid and structural mechanics problems that are governed by a single linear or nonlinear differential equation is well known [1-5]. Recently, the method has been extended to finite element formulations [6-10], In this paper the suitability of the Galerkin method for solution of large deflection problems of plates is studied. The method is first applied to investigate large deflection behavior of clamped isotropic plates on elastic foundations. After validity of the method is established, it is then extended to analyze problems of large deflection of clamped skew sandwich plates, both with and without elastic foundations. The plates are considered to be subjected to uniformly distributed loads. The governing differential equations for the sandwich plate in terms of displacements in Cartesian coordinates are first established and then transformed into skew coordinates. The nonlinear differential equations of the plates are then transformed into nonlinear algebraic equations, using the Galerkin method. These equations are solved using a Newton-Raphson iterative procedure. The parameters considered herein for large deflection behavior of skew sandwich plates are the aspect ratio of the plate, Poisson's ratio, skew angle, shearing stiffnesses of the core, and foundation moduli. Numerical results are presented for skew sandwich plates for various skew angles and aspect ratios. Simplicity and quick convergence are the advantages of the method, in comparison with other much more laborious numerical methods that require extensive computer facilities.  相似文献   

17.
Static problems for the elastic plates and rods periodically perforated by small holes of different shapes are solved using the asymptotic approach based on the combination of the asymptotic technique and the multi-scale homogenization method. Using the asymptotic homogenization method the original boundary-value problem is reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. The combination of the perturbation method and the technique of successive approximations is applied for the solution of the unit cell problems. Taking into the account small size of holes the method of perturbation of the shape of the boundary and the Schwarz alternating method are used. The problems of torsion of a rod with perforated cross-section; deflection of the perforated membrane loaded by a normal load; and bending of perforated plates with circular and square holes are considered consecutively. The error of the applied asymptotic techniques is estimated and the high accuracy of the obtained solutions is demonstrated.  相似文献   

18.
The problems of determining the roots of dispersion equations for free bending vibrations of thin magnetoelastic plates and shells are of both theoretical and practical interest, in particular, in studying vibrations of metallic structures used in controlled thermonuclear reactors. These problems were solved on the basis of the Kirchhoff hypothesis in [1–5]. In [6], an exact spatial approach to determining the vibration frequencies of thin plates was suggested, and it was shown that it completely agrees with the solution obtained according to the Kirchhoff hypothesis. In [7–9], this exact approach was used to solve the problem on vibrations of thin magnetoelastic plates, and it was shown by cumbersome calculations that the solutions obtained according to the exact theory and the Kirchhoff hypothesis differ substantially except in a single case. In [10], the equations of the dynamic theory of elasticity in the axisymmetric problem are given. In [11], the equations for the vibration frequencies of thin ferromagnetic plates with arbitrary conductivity were obtained in the exact statement. In [12], the Kirchhoff hypothesis was used to obtain dispersion relations for a magnetoelastic thin shell. In [5, 13–16], the relations for the Maxwell tensor and the ponderomotive force for magnetics were presented. In [17], the dispersion relations for thin ferromagnetic plates in the transverse field in the spatial statement were studied analytically and numerically.In the present paper, on the basis of the exact approach, we study free bending vibrations of a thin ferromagnetic cylindrical shell. We obtain the exact dispersion equation in the form of a sixth-order determinant, which can be solved numerically in the case of a magnetoelastic thin shell. The numerical results are presented in tables and compared with the results obtained by the Kirchhoff hypothesis. We show a large number of differences in the results, even for the least frequency.  相似文献   

19.
Differential equations of the general theory describing the stress-strain state of conical shells are very complicated, and when computing the exact solution of the problem by analytic methods one encounters severe or even so far insurmountable difficulties. Therefore, in the present paper we develop an approach based on the method of asymptotic synthesis of the stressed state, which has already proved efficient when solving similar problems for cylindrical shells [1, 2]. We essentially use the fourth-order differential equations obtained by Kan [3], which describe the ground state and the boundary effect. Earlier, such equations have already been used to solve problems concerning force and thermal actions on weakly conical shells [4–6]. By applying the asymptotic synthesis method to these equations, we manage to obtain sufficiently accurate closed-form solutions.  相似文献   

20.
A study is made of the nonlinear problem of the flow without separation of a perfect weightless liquid past a plate near the free surface. This problem was first posed by Gurevich [1]. At present, there are only a general solution to the problem [2–4] and some numerical calculations [5], which have been made under definite restrictions and are inadequate for detailed information about the interaction between the free surface and the plate. In the present paper, a complete investigation of the problem is given. Convenient computational formulas are obtained together with asymptotic expansions of them, and detailed calculations are made for all depths of the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 158–162, January–February, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号