首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We have investigated the formation, drop sizes, and stability of emulsions prepared by hand shaking in a closed vessel in which the emulsion is in contact with a single type of surface during its formation. The emulsions undergo catastrophic phase inversion from oil-in-water (o/w) to water-in-oil (w/o) as the oil volume fraction is increased. We find that the oil volume fraction required for catastrophic inversion exhibits a linear correlation with the oil-water-solid surface contact angle. W/o high internal phase emulsions (HIPEs) prepared in this way contain water drops of diameters in the range 10-100 μm; emulsion drop size depends on the surfactant concentration and method of preparation. W/o HIPEs with large water drops show water separation but w/o HIPEs with small water drops are stable with respect to water separation for more than 100 days. The destabilization of the w/o HIPEs can be triggered by either evaporation of the oil continuous phase or by contact the emulsion with a solid surface of the "wrong" wettability.  相似文献   

2.
动态单滴法研究乳状液液膜的稳定性   总被引:2,自引:0,他引:2  
乳状液液膜作为化学分离的一种手段,自七十年代发现以来已有了许多进展,但是如何将其工业化还有许多课题有待于进一步研究.目前,除了乳状液液膜的水静态渗透性质以外,对乳状液液膜的稳定性和溶胀性质的研究主要采用搅拌法.虽然得到较好的规律性,但是搅拌法具有乳状液滴粒径分布广的弱点,对于不同的搅拌方式及条件,乳状液液膜的有效面积不同,对液膜作用的机械强度不同,因此结果会有很大差别.我们自行设计的动态单滴法实验装置,可定量地研究乳状液液膜的溶胀、稳定性及水渗透性质.  相似文献   

3.
The destabilization mechanism was investigated of a triple Janus emulsion. The inner part of the emulsion consisted of Janus drops of a vegetable oil (VO) and a silicone oil (SO) in an aqueous (W) drop, (VO+SO)/W. This drop, in turn was dispersed in a VO drop forming a double emulsion (VO+SO)/W/VO. Finally, these complex drops generated a complex Janus (SO+VO)/W/VO/SO triple emulsion by being dispersed in a continuous SO phase. The observations were limited to the time dependence of the over-all creaming/sedimentation processes, to the separation of layers of the compounds and to optical microscopy of the drop configuration with time. In the destabilization process the rise of the complex drops, (SO+VO)/W/VO, caused crowding in the upper part of the emulsion, which in turn led to enhanced coalescence, inversion and separation of a dilute vegetable oil emulsion. As a consequence of the separation of VO in the process, the remaining drops contained a greater W fraction and greater density. This change, in turn, resulted in sedimentation of the complex drops to form several high internal ratio morphologies in an SO continuous emulsion in the lower part of the test tube, among them a W/VO/SO emulsion. Finally, an inversion took place into an SO/VO/W double emulsion forming a separate bottom layer.  相似文献   

4.
Here, we investigate experimentally and theoretically the factors that determine the size of the emulsion droplets produced by membrane emulsification in "batch regime" (without applied crossflow). Hydrophilic glass membranes of pore diameters between 1 and 10 mum have been used to obtain oil-in-water emulsions. The working surfactant concentrations are high enough to prevent drop coalescence. Under such conditions, the size of the formed drops does not depend on the surfactant type and concentration, on the interfacial tension, or on the increase of viscosity of the inner (oil) phase. The drops are monodisperse when the working transmembrane pressure is slightly above the critical pressure for drop breakup. At higher pressures, the size distribution becomes bimodal: a superposition of a "normal" peak of monodisperse drops and an "anomalous" peak of polydisperse drops is observed. The theoretical model assumes that, at the moment of breakup, the hydrodynamic ejection force acting on the drop is equal to the critical capillary force that corresponds to the stability-instability transition in the drop shape. The derived equations are applied to predict the mean size of the obtained drops in regimes of constant flow rate and constant transmembrane pressure. Agreement between theory and experiment is established for the latter regime, which corresponds to our experimental conditions. The transition from unimodal to bimodal drop size distribution upon increase of the transmembrane pressure can be interpreted in terms of the transition from "dripping" to "jetting" mechanisms of drop detachment.  相似文献   

5.
Evaporation rates of water from concentrated oil-in-water emulsions   总被引:3,自引:0,他引:3  
We have investigated the rate of water evaporation from concentrated oil-in-water (o/w) emulsions containing an involatile oil. Evaporation of the water continuous phase causes compression of the emulsion with progressive distortion of the oil drops and thinning of the water films separating them. Theoretically, the vapor pressure of water is sensitive to the interdroplet interactions, which are a function of the film thickness. Three main possible situations are considered. First, under conditions when the evaporation rate is controlled by mass transfer across the stagnant vapor phase, model calculations show that evaporation can, in principle, be slowed by repulsive interdroplet interactions. However, significant retardation requires very strong repulsive forces acting over large separations for typical emulsion drop sizes. Second, water evaporation may be limited by diffusion in the network of water films within the emulsion. In this situation, water loss by evaporation from the emulsion surface leads to a gradient in the water concentration (and in the water film thickness). Third, compression of the drops may lead to coalescence of the emulsion drops and the formation of a macroscopic oil film at the emulsion surface, which serves to prevent further water evaporation. Water mass-loss curves have been measured for silicone o/w emulsions stabilized by the anionic surfactant SDS as a function of the water content, the thickness of the stagnant vapor-phase layer, and the concentration of electrolyte in the aqueous phase, and the results are discussed in terms of the three possible scenarios just described. In systems with added salt, water evaporation virtually ceases before all the water present is lost, probably as a result of oil-drop coalescence resulting in the formation of a water-impermeable oil film at the emulsion surface.  相似文献   

6.
It has been shown (N. R. Gupta, A. Nadim, H. Haj-Hariri, and A. Borhan, J. Colloid Interface Sci. 218, 338 1999) that a circular drop translating in a Hele-Shaw cell under the action of gravity is linearly stable for nonzero interfacial tension. In this paper, we use the boundary integral method to examine the nonlinear evolution of the shape of initially noncircular drops translating in a Hele-Shaw cell. For prolate initial deformations, it is found that the drop reverts to a circular shape for all finite Bond numbers considered. Initially oblate drops, on the other hand, are found to become unstable and break up if the initial shape perturbation is of sufficiently large magnitude. The critical conditions for the onset of drop breakup are examined in terms of the magnitude of the initial deformation as a function of Bond number. Two branches of marginal stability are identified and the effects of viscosity ratio and asymmetric initial perturbations on the stability diagram are discussed. Copyright 2000 Academic Press.  相似文献   

7.
A circular drop is a linearly stable solution for the buoyancy-driven motion of drops in a Hele-Shaw cell [Gupta et al. J. Colloid Interface Sci.218(1), 338 (1999)]. In the absence of surface-active agents, an initially prolate drop always goes to a steady circular shape while initially oblate drops exhibit complex dynamics [Gupta et al. J. Colloid Interface Sci.222, 107 (2000)]. In this study, the effect of insoluble surfactant impurities on the critical conditions for drop breakup is explored by using the Langmuir adsorption framework in conjunction with a physically based expression for the depth-averaged tangential stress exerted on a two-phase interface in a Hele-Shaw cell. It is shown that the presence of surfactants can have both a stabilizing and a destabilizing effect on the shape of the drop, depending on the Bond number, the magnitude of the initial perturbation, and the strength of surface convection. Similar to the clean drop dynamics, two marginally stable branches are found. Increasing the surface Peclet number results in the stabilization of the main branch while the secondary branch shifts to higher Bond numbers. The mode of breakup is also found to be strongly influenced by the strength of surface convection.  相似文献   

8.
A three-dimensional boundary-integral algorithm has been developed to handle the tangential Marangoni stresses in thermocapillary motion of drops. Depending on whether the integration and observation points are on the same or different drops, singularity or near-singularity subtraction is used in the inhomogeneous term of the boundary-integral formulation. Integration is then performed analytically over flat triangles in the subtracted region. Relative trajectories for two deformable drops are calculated for different values of the drop size ratio, drop-to-medium thermal conductivity ratio, and viscosity ratio and compared to those for spherical and slightly deformable drops. Results indicate that deformation increases the minimum separation and inhibits coalescence but is not important enough for appropriate physical parameters to induce the capture or breakup behaviors observed in buoyancy. Interaction times calculated by artificially continuing spherical drop trajectories yield results accurate to within about 10%.  相似文献   

9.
Shaping, defined as deformation in combination with gel formation of gelatine and kappa-carrageenan drops in an elongation flow, was studied. The focus was to investigate the possibility of shaping and fixating small drops in the diameter range 20 to 229 mum. In the shaping progress and the influence of experimental properties, the viscosity, temperature, and flow of the deforming fluid were examined on the final drop shape. In the experiments a hot emulsion of an aqueous biopolymer solution in silicone oil was injected into cold silicone oil where a deforming elongation flow field existed. After injection, a temperature decrease in the drops resulted in a gel formation of the biopolymer and a fixation of the deformed drop in the flow. The shape was measured and the effect on the drop aspect ratio was determined by image analysis. Over the total drop diameter range, kappa-carrageenan was more ellipsoid-shaped than gelatine, with a maximum aspect ratio of 6 compared to 4 for gelatine. For small drops, around 22 mum, it is possible to shape kappa-carrageenan, but for gelatine small drops tend to be unaffected. An increase in viscosity, temperature, and flow resulted in an increase in the final fixated shape of the drops. The differences in drop deformation between the biopolymers were explained by drop-viscosity/oil differences and differences in the kinetics of gel formation. The different gel formation kinetics resulted in a short, well-defined, shaping process for kappa-carrageenan, while for gelatine the process was more complex, with both deformation and relaxation present at different stages.  相似文献   

10.
Surfactants are routinely used to control the breakup of drops and jets in many applications such as inkjet printing, crop spraying, and DNA or protein microarraying. The breakup of surfactant-free drops and jets has been extensively studied. By contrast, little is known about the closely related problem of interface rupture when surfactants are present. Solutions of a nonionic surfactant, pentaethylene glycol monododecyl ether, or C12E5, in water and in 90 wt % glycerol/water are used to show the effects of surfactant and viscosity on the deformation and breakup dynamics of stretching liquid bridges. Equilibrium surface tensions for both solutions can be fitted with the Langmuir-Szyskowski equation. All experiments have been done at 24 degrees C. The critical micelle concentrations for C12E5 are 0.04 and 0.4 mM in water and the glycerol/water solution, respectively. With high-speed imaging, the dynamic shapes of bridges held captive between two rods of 3.15 mm diameter are captured and analyzed with a time resolution of 0.1-1 ms. The bridge lengths are 3.15 mm initially and about 5-7 mm at pinch-off. Breakup occurs after stretching for about 0.2-0.3 s, depending on the solution viscosity and the surfactant concentration. When the liquid bridges break up, the volume of the sessile drop left on the bottom rod is about 3 times larger than that of the pendant drop left on the top rod. This asymmetry is due to gravity and is influenced by the equilibrium surface tensions. Surfactant-containing low-viscosity water bridges are shown to break up faster than surfactant-free ones because of the effect of gravity. With or without surfactant, water bridges form satellite drops. Surfactant-containing high-viscosity glycerol/water bridges break up more slowly than surfactant-free ones because of strong viscous effects. Moreover, the shapes of the sessile drops close to breakup exhibit a "pear-like" tip; whether a satellite forms depends on the surface age of the bridge before stretching commences. These unexpected effects arising from the addition of surfactants are due to the capillary pressure reduction and Marangoni flows linked to dynamic surface tension.  相似文献   

11.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

12.
A study of the emulsification of silicone oil and water in the presence of partially hydrophobic, monodisperse silica nanoparticles is described. Emulsification involves the fragmentation of bulk liquids and the resulting large drops and the coalescence of some of those drops. The influence of particle concentration, oil/water ratio, and emulsification time on the relative extents of fragmentation and coalescence during the formation of emulsions, prepared using either batch or continuous methods, has been investigated. For batch emulsions, the average drop diameter decreases with increasing particle concentration as the extent of limited coalescence is reduced. Increasing the oil volume fraction in the emulsion at fixed aqueous particle concentration results in an increase in the average drop diameter together with a dramatic lowering of the uniformity of the drop size distribution as coalescence becomes increasingly significant until catastrophic phase inversion occurs. For low oil volume fractions (phi(o)), fragmentation dominates during emulsification since the mean drop size decreases with emulsification time. For higher phi(o) close to conditions of phase inversion, coalescence becomes more prevalent and the drop size increases with time with stable multiple emulsions forming as a result.  相似文献   

13.
We review the flow of emulsion drops, focusing on recent work involving complex interfaces, which may include the presence of surfactants, particles, surface-active polymers, or solid-like membrane layers. En route, important phenomena in multiphase flow associated with emulsion rheology are considered, including drop coalescence and breakup, surfactant transport, or the mechanics of composite interfaces.  相似文献   

14.
High internal phase ratio (HIPR) aqueous Janus emulsions of two immiscible oils, silicone oil (SO) and a vegetable oil (VO), were prepared using a vibration mixer. The simple HIPR Janus emulsions, (VO + SO)/W, were found at weight fractions of the aqueous phase in excess of 0.3, while at a corresponding fraction of 0.1, a triple emulsion was obtained with the Janus emulsion forming a drop inside the vegetable oil to give a double Janus emulsion, (VO + SO)/W/VO, which in turn formed drops in the silicone oil resulting in a triple Janus emulsion (VO + SO)/W/VO/SO. Increasing the aqueous-phase fraction from 0.1 to 0.3 consequently meant an inversion, of which one intermediate stage was observed: a more complex configuration, e.g., one in which large SO drops with highly distorted VO drops attached were dispersed in a regular aqueous emulsion with spherical Janus (VO + SO) drops. A preliminary investigation was made into the destabilization process of the triple emulsions.  相似文献   

15.
Here, we calculate the hydrodynamic ejection force acting on a microscopic emulsion drop, which is continuously growing at a capillary tip. This force could cause drop detachment in the processes of membrane and microchannel emulsification, and affect the size of the released drops. The micrometer-sized drops are not deformed by gravity and their formation happens at small Reynolds numbers despite the fact that the typical period of drop generation is of the order of 0.1 s. Under such conditions, the flow of the disperse phase through the capillary, as it inflates the droplet, engenders a hydrodynamic force, which has a predominantly viscous (rather than inertial) origin. The hydrodynamic boundary problem is solved numerically, by using appropriate curvilinear coordinates. The spatial distributions of the stream function and the velocity components are computed. The hydrodynamic force acting on the drop is expressed in terms of three universal functions of the ratio of the pore and drop radii. These functions are computed numerically. Interpolation formulas are obtained for their easier calculation. It turns out that the increase in the viscosity of each of the two liquid phases increases the total ejection force. The results could find applications for the interpretation and prediction of the effect of hydrodynamic factors on the drop size in membrane emulsification.  相似文献   

16.
The diffuse literature on drop oscillation is reviewed, with an emphasis on capillary wave oscillations of constrained drops. Based on the review, a unifying conceptual framework is presented for drop and bubble oscillations, which considers free and constrained drops/bubbles, oscillation of the surface or the bulk (i.e. center of mass) of the drop/bubble, as well as different types of restoring forces (surface tension, gravity, electromagnetic, etc). Experimental results (both from literature and from a new set of experiments studying sessile drops in cross flowing air) are used to test mathematical models from literature, using a novel whole profile analysis technique for the new experiments. The cause of oscillation (cross flowing air, vibrated surface, etc.) is seen not to affect oscillation frequency. In terms of models, simplified models are seen to poorly predict oscillation frequencies. The most advanced literature models are found to be relatively accurate at predicting frequency. However it is seen that no existing models are reliably accurate across a wide range of contact angles, indicating the need for advanced models/empirical relations especially for drops undergoing the lowest frequency mode of oscillation (the order 1 degree 1 non-axisymmetric ‘bending’ mode that corresponds to a lateral ‘rocking’ motion of the drop).  相似文献   

17.
We developed a novel "spray dry-based" method for preparing surface-modified particle via "block copolymer-assisted" emulsification/evaporation for pulmonary drug delivery. The method included three steps: (1) o/w emulsion containing both hydrophobic polymers and amphiphilic block copolymers was obtained by emulsification of water and a polymer-containing organic solvent, (2) the o/w emulsion was misted with a nebulizer, and (3) the emulsion mists were dried by a heater. In this way, the hydrophobic polymers and the hydrophobic part of the amphiphilic block copolymers gradually tangled during the evaporation of organic solvents from the o/w emulsion. Consequently, the hydrophilic polymer chain was introduced on the particle surface. The particle surface can be easily modified although there are no reactive groups in the hydrophobic polymer molecules. We successfully obtained dry PEG-PLA/PLGA microparticles by controlling the weight ratio of the block copolymer and the hydrophobic polymer. The introduction of PEG to the particle surface involves an increase in the Zeta potential of the particles. Interestingly, the "dimpled" microparticles having a diameter of approximately 2 μm were obtained. The "dimpled" microparticles can serve as drug carriers for pulmonary drug delivery, because the particles have a large surface area. We expect that this novel surface-modification technique will enable efficient fabrication of particles in drug delivery systems.  相似文献   

18.
The effects of surfactants on the interfacial tension driven retraction of elongated drops were studied in a spinning drop tensiometer. Experiments were conducted on polypropylene glycol (PPG) drops suspended in polyethylene glycol (PEG), with Pluronic block copolymers as surfactants. Two unusual observations are reported here. In the first, initially-elongated drops generated at high rotational speed were allowed to retract by reducing the rotational speed. Pluronic-laden drops would not retract completely, but would instead maintain strongly nonspherical shapes indefinitely. We attribute such "nonretraction" to an interfacial yield stress induced by the Pluronic surfactant. In the second, drops being heated while spinning at a constant speed would elongate sharply at some temperature, and subsequently breakup. Such "autoextension" and breakup indicate complex nonmonotonic changes in interfacial tension with time during heating. We propose that autoextension occurs because at low temperature, interfacially-adsorbed surfactant is crystallized and hence trapped at the interface at a concentration far above equilibrium.  相似文献   

19.
Drop shaping, i.e., flow-induced deformation and fixation by gel formation, was studied under dynamic conditions in a fast continuous process for a water-in-oil system. The system consisted of sunflower oil with different surfactant concentrations (0.1-2% Admul Wol) and a 1.5% kappa-carrageenan solution with different Na(+) and K(+) concentrations. The continuous phase flowed in a 10-mm-wide straight channel into which the dispersed phase was injected via a thin needle. A subsequent shaping channel with a width of 1 or 2 mm deformed the drops. Gel formation was induced by a temperature gradient between the continuous and dispersed phase. Drop sizes in the range 220-roughly 1000 microm were produced at the needle tip by varying the ratio between the oil and carrageenan flow rate. A diffusion zone before the narrow channel allowed the surfactant to adsorb at the interface. In the elongation flow at the entrance of the shaping geometry, drops underwent initial elongation. In the narrow channel, the drops developed a parabolic shape within a residence time of 0.03-0.15 s. Choosing the correct parameter combinations made it possible to fix the deformation by gel formation within this time period. Shaped drops were shown to be functional. At a concentration of 25% in an emulsion, they increased the viscosity by about 15-20% compared to spherical drops even though 45% of the shaped drops had an aspect ratio of less than 1.2.  相似文献   

20.
We present a new and facile method to evaluate w/o/w emulsions containing fluorescent markers by flow cytometry. Flow cytometry allows simultaneous measurement of w/o/w emulsion droplets "marked" with a fluorescent marker or "blank" without the need for complicated sample preparation. The yield of preparation of the w/o/w emulsion and the release rate of the fluorescent marker FITC-BSA were investigated by this new method. The release fraction (after 24 h) of FITC-BSA from the w/o/w emulsion decreased with increasing concentration of FITC-BSA inside the internal phase, just like the release fraction of NaCl as marker from the w/o/w emulsion. Flow cytometry results show that the yield and release behavior in w/o/w emulsions are in agreement with results reported by more complicated methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号