首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({\mathcal {B}}(X)\) be the algebra of all bounded linear operators on an infinite dimensional complex Banach space \(X\) . We determine the form of surjective additive maps \(\varphi :{\mathcal {B}}(X)\rightarrow {{\mathcal {B}}(X)}\) which preserve operators of inner local spectral radius zero at points of \(X\) .  相似文献   

2.
Suppose X and Y are Banach spaces, and \({{\mathcal{I}}}\) , \({{\mathcal{J}}}\) are operator ideals. compact operators). Under what conditions does the inclusion \({\mathcal{I}(X,Y) \subset \mathcal{J}(X,Y)}\) , or the equality \({\mathcal{I}(X,Y)\,=\,\mathcal{J}(X,Y)}\) , hold? We examine this question when \({\mathcal{I}, \mathcal{J}}\) are the ideals of Dunford–Pettis, strictly (co)singular, finitely strictly singular, inessential, or (weakly) compact operators, while X and Y are non-commutative function spaces. Since such spaces are ordered, we also address the same questions for positive parts of such ideals.  相似文献   

3.
Let \({\mathcal{P}}\) be an ideal of closed quotients of a completely regular frame L and \({\mathcal{R}_{\mathcal{P}}(L)}\) the collection of all functions in the ring \({\mathcal{R}(L)}\) whose support belong to \({\mathcal{P}}\) . We show that \({\mathcal{R}(L)}\) is a Noetherian ring if and only if \({\mathcal{R}(L)}\) is an Artinian ring if and only if L is a finite frame. Using this result, we next show that if \({\mathcal{P}}\) is the ideal of all compact closed quotients of L and L is \({\mathcal{P}}\) -continuous, then \({\mathcal{R}_{\mathcal{P}}(L)}\) is a Noetherian ring if and only if L is finite. Moreover, we show that L is a P-frame if and only if each ideal of \({\mathcal{R}(L)}\) is of the form \({\mathcal{R}_{\mathcal{P}}(L)}\) for some choice of \({\mathcal{P}}\) . We furnish equivalent conditions for \({\mathcal{R}_{\mathcal{P}}(L)}\) to be a prime ideal, a free ideal, and an essential ideal of \({\mathcal{R}(L)}\) separately in terms of the cozero elements of L. Finally, we show that L is basically disconnected if and only if \({\mathcal{R}(L)}\) is a coherent ring.  相似文献   

4.
We prove some uniform and pointwise gradient estimates for the Dirichlet and the Neumann evolution operators \(G_{\mathcal {D}}(t,s)\) and \(G_{\mathcal {N}}(t,s)\) associated with a class of nonautonomous elliptic operators (t) with unbounded coefficients defined in I× \(\mathbb{R}_{+}\) (where I is a right-halfline or I=?). We also prove the existence and the uniqueness of a tight evolution system of measures \(\left \{\mu _{t}^{\mathcal {N}}\right \}_{t \in I}\) associated with \(G_{\mathcal {N}}(t,s)\) , which turns out to be sub-invariant for \(G_{\mathcal {D}}(t,s)\) , and we study the asymptotic behaviour of the evolution operators \(G_{\mathcal {D}}(t,s)\) and \(G_{\mathcal {N}}(t,s)\) in the L p -spaces related to the system \(\left \{\mu _{t}^{\mathcal {N}}\right \}_{t \in I}\) .  相似文献   

5.
Parseval frames have particularly useful properties, and in some cases, they can be used to reconstruct signals which were analyzed by a non-Parseval frame. In this paper, we completely describe the degree to which such reconstruction is feasible. Indeed, notice that for fixed frames \({\mathcal{F}}\) and \({\mathcal{X}}\) with synthesis operators F and X, the operator norm of FX ??I measures the (normalized) worst-case error in the reconstruction of vectors when analyzed with \({\mathcal{X}}\) and synthesized with \({\mathcal{F}}\) . Hence, for any given frame \({\mathcal{F}}\) , we compute explicitly the infimum of the operator norm of FX ??I, where \({\mathcal{X}}\) is any Parseval frame. The \({\mathcal{X}}\) ’s that minimize this quantity are called Parseval quasi-dual frames of \({\mathcal{F}}\) . Our treatment considers both finite and infinite Parseval quasi-dual frames.  相似文献   

6.
For a given class \({\mathcal{G}}\) of groups, a 3-manifold M is of \({\mathcal{G}}\) -category \({\leq k}\) if it can be covered by k open subsets such that for each path-component W of the subsets the image of its fundamental group \({ \pi_1(W) \rightarrow \pi(M )}\) belongs to \({\mathcal{G}}\) . The smallest number k such that M admits such a covering is the \({\mathcal{G}}\) -category, \({cat_{\mathcal{G}}(M)}\) . If M is closed, it has \({\mathcal{G}}\) -category between 1 and 4. We characterize all closed 3-manifolds of \({\mathcal{G}}\) -category 1, 2, and 3 for various classes \({\mathcal{G}}\) .  相似文献   

7.
For a domain \(\varOmega \) in \(\mathbb {C}\) and an operator \(T\) in \({\mathcal {B}}_n(\varOmega )\) , Cowen and Douglas construct a Hermitian holomorphic vector bundle \(E_T\) over \(\varOmega \) corresponding to \(T\) . The Hermitian holomorphic vector bundle \(E_T\) is obtained as a pull-back of the tautological bundle \(S(n,{\mathcal {H}})\) defined over \({\mathcal {G}}r(n,{\mathcal {H}})\) by a nondegenerate holomorphic map \(z\mapsto {\mathrm{ker}}(T-z),\;z\in \varOmega \) . To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank \(n\) Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle \({\mathcal {J}}_k({\mathcal {L}}_f)\) , we have shown that the curvature of the line bundle \({\mathcal {L}}_f\) completely determines the class of \({\mathcal {J}}_k({\mathcal {L}}_f)\) . In case of rank \(n\) Hermitian holomorphic vector bundle \(E_f\) , We have calculated the curvature of jet bundle \({\mathcal {J}}_k(E_f)\) and also obtained a trace formula for jet bundle \({\mathcal {J}}_k(E_f)\) .  相似文献   

8.
Let Π be a polar space of rank n≥3. Denote by \({\mathcal{G}}_{k}(\varPi)\) the polar Grassmannian formed by singular subspaces of Π whose projective dimension is equal to k. Suppose that k is an integer not greater than n?2 and consider the relation \({\mathfrak{R}}_{i,j}\) , 0≤ijk+1, formed by all pairs \((X,Y)\in{\mathcal{G}}_{k}(\varPi)\times{\mathcal{G}}_{k}(\varPi)\) such that dim p (X Y)=k?i and dim p (XY)=k?j (X consists of all points of Π collinear to every point of X). We show that every bijective transformation of \({\mathcal{G}}_{k}(\varPi)\) preserving \({\mathfrak{R}}_{1,1}\) is induced by an automorphism of Π, except the case where Π is a polar space of type D n with lines containing precisely three points. If k=n?t?1, where t is an integer satisfying n≥2t≥4, we show that every bijective transformation of \({\mathcal{G}}_{k}(\varPi)\) preserving \({\mathfrak{R}}_{0,t}\) is induced by an automorphism of Π.  相似文献   

9.
Zeev Nutov 《Combinatorica》2014,34(1):95-114
Part of this paper appeared in the preliminary version [16]. An ordered pair ? = (S, S +) of subsets of a groundset V is called a biset if S ? S+; (V S +;V S) is the co-biset of ?. Two bisets \(\hat X,\hat Y\) intersect if X XY \(\not 0\) and cross if both XY \(\not 0\) and X +Y + ≠= V. The intersection and the union of two bisets \(\hat X,\hat Y\) are defined by \(\hat X \cap \hat Y = (X \cap Y,X^ + \cap Y^ + )\) and \(\hat X \cup \hat Y = (X \cup Y,X^ + \cup Y^ + )\) . A biset-family \(\mathcal{F}\) is crossing (intersecting) if \(\hat X \cap \hat Y,\hat X \cup \hat Y \in \mathcal{F}\) for any \(\hat X,\hat Y \in \mathcal{F}\) that cross (intersect). A directed edge covers a biset ? if it goes from S to V S +. We consider the problem of covering a crossing biset-family \(\mathcal{F}\) by a minimum-cost set of directed edges. While for intersecting \(\mathcal{F}\) , a standard primal-dual algorithm computes an optimal solution, the approximability of the case of crossing \(\mathcal{F}\) is not yet understood, as it includes several NP-hard problems, for which a poly-logarithmic approximation was discovered only recently or is not known. Let us say that a biset-family \(\mathcal{F}\) is k-regular if \(\hat X \cap \hat Y,\hat X \cup \hat Y \in \mathcal{F}\) for any \(\hat X,\hat Y \in \mathcal{F}\) with |V (XY)≥k+1 that intersect. In this paper we obtain an O(log |V|)-approximation algorithm for arbitrary crossing \(\mathcal{F}\) if in addition both \(\mathcal{F}\) and the family of co-bisets of \(\mathcal{F}\) are k-regular, our ratios are: \(O\left( {\log \frac{{|V|}} {{|V| - k}}} \right) \) if |S + \ S| = k for all \(\hat S \in \mathcal{F}\) , and \(O\left( {\frac{{|V|}} {{|V| - k}}\log \frac{{|V|}} {{|V| - k}}} \right) \) if |S + \ S| = k for all \(\hat S \in \mathcal{F}\) . Using these generic algorithms, we derive for some network design problems the following approximation ratios: \(O\left( {\log k \cdot \log \tfrac{n} {{n - k}}} \right) \) for k-Connected Subgraph, and O(logk) \(\min \{ \tfrac{n} {{n - k}}\log \tfrac{n} {{n - k}},\log k\} \) for Subset k-Connected Subgraph when all edges with positive cost have their endnodes in the subset.  相似文献   

10.
Let \({\mathcal {C}}\) be two times continuously differentiable curve in \({\mathbb {R}}^2\) with at least one point at which the curvature is non-zero. For any \(i,j \geqslant 0\) with \(i+j =1\) , let \({\mathbf {Bad}}(i,j)\) denote the set of points \((x,y) \in {\mathbb {R}}^2\) for which \( \max \{ \Vert qx\Vert ^{1/i}, \, \Vert qy\Vert ^{1/j} \} > c/q \) for all \( q \in {\mathbb {N}}\) . Here \(c = c(x,y)\) is a positive constant. Our main result implies that any finite intersection of such sets with \({\mathcal {C}}\) has full Hausdorff dimension. This provides a solution to a problem of Davenport dating back to the sixties.  相似文献   

11.
The overlap, \({\mathcal{D}_N}\) , between the ground state of N free fermions and the ground state of N fermions in an external potential in one spatial dimension is given by a generalized Gram determinant. An upper bound is \({\mathcal{D}_N\leq\exp(-\mathcal{I}_N)}\) with the so-called Anderson integral \({\mathcal{I}_N}\) . We prove, provided the external potential satisfies some conditions, that in the thermodynamic limit \({\mathcal{I}_N = \gamma\ln N + O(1)}\) as \({N\to\infty}\) . The coefficient γ > 0 is given in terms of the transmission coefficient of the one-particle scattering matrix. We obtain a similar lower bound on \({\mathcal{D}_N}\) concluding that \({\tilde{C} N^{-\tilde{\gamma}} \leq \mathcal{D}_N \leq CN^{-\gamma}}\) with constants C, \({\tilde{C}}\) , and \({\tilde{\gamma}}\) . In particular, \({\mathcal{D}_N\to 0}\) as \({N\to\infty}\) which is known as Anderson’s orthogonality catastrophe.  相似文献   

12.
For a graph G and a set \({\mathcal{F}}\) of connected graphs, G is said be \({\mathcal{F}}\) -free if G does not contain any member of \({\mathcal{F}}\) as an induced subgraph. We let \({\mathcal{G} _{3}(\mathcal{F})}\) denote the set of all 3-connected \({\mathcal{F}}\) -free graphs. This paper is concerned with sets \({\mathcal{F}}\) of connected graphs such that \({\mathcal{F}}\) contains no star, \({|\mathcal{F}|=3}\) and \({\mathcal{G}_{3}(\mathcal{F})}\) is finite. Among other results, we show that for a connected graph T( ≠ K 1) which is not a star, \({\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}\) is finite if and only if T is a path of order at most 6.  相似文献   

13.
Fei Xu 《Archiv der Mathematik》2014,103(3):235-253
Let \({\mathcal{C}}\) be a finite EI category and k be a field. We consider the category algebra \({k\mathcal{C}}\) . Suppose \({\sf{K}(\mathcal{C})=\sf{D}^b(k \mathcal{C}-\sf{mod})}\) is the bounded derived category of finitely generated left modules. This is a tensor triangulated category, and we compute its spectrum in the sense of Balmer. When \({\mathcal{C}=G \propto \mathcal{P}}\) is a finite transporter category, the category algebra becomes Gorenstein, so we can define the stable module category \({\underline{\sf{CM}} k(G \propto \mathcal{P})}\) , of maximal Cohen–Macaulay modules, as a quotient category of \({{\sf{K}}(G \propto \mathcal{P})}\) . Since \({\underline{\sf{CM}} k(G\propto\mathcal{P})}\) is also tensor triangulated, we compute its spectrum as well. These spectra are used to classify tensor ideal thick subcategories of the corresponding tensor triangulated categories.  相似文献   

14.
With each orthogeometry (P, ⊥) we associate ${{\mathbb {L}}(P, \bot)}$ , a complemented modular lattice with involution (CMIL), consisting of all subspaces X and X such that dim X < ?0, and we study its rôle in decompositions of (P, ⊥) as directed (resp., disjoint) union. We also establish a 1–1 correspondence between ?-varieties ${\mathcal {V}}$ of CMILs with ${\mathcal {V}}$ generated by its finite dimensional members and ‘quasivarieties’ ${\mathcal {G}}$ of orthogeometries: ${\mathcal {V}}$ consists of the CMILs representable within some geometry from ${\mathcal {G}}$ and ${\mathcal {G}}$ of the (P, ⊥) with ${{\mathbb {L}}(P, \bot) \in {\mathcal {V}}}$ . Here, ${\mathcal {V}}$ is recursively axiomatizable if and only if so is ${\mathcal {G}}$ . It follows that the equational theory of ${\mathcal {V}}$ is decidable provided that the equational theories of the ${\{{\mathbb {L}}(P, \bot)\, |\, (P, \bot) \in \mathcal {G}, {\rm{dim}} P = n\}}$ are uniformly decidable.  相似文献   

15.
Let K be a field, $\mathcal {O}_v$ a valuation ring of K associated to a valuation v: K → Γ?∪?{?∞?}, and m v the unique maximal ideal of $\mathcal {O}_v$ . Consider an ideal $\mathcal {I}$ of the free K-algebra $K\langle X\rangle =K\langle X_1,...,X_n\rangle$ on X 1,...,X n . If ${\cal I}$ is generated by a subset $\mathcal {G}\subset{\cal O}_v\langle X\rangle$ which is a monic Gr?bner basis of ${\cal I}$ in $K\langle X\rangle$ , where $\mathcal {O}_v\langle X\rangle =\mathcal{O}_v\langle X_1,...,X_n\rangle$ is the free $\mathcal{O}_v$ -algebra on X 1,...,X n , then the valuation v induces naturally an exhaustive and separated Γ-filtration F v A for the K-algebra $A=K\langle X\rangle /\mathcal {I}$ , and moreover $\mathcal{I}\cap\mathcal{O}_v\langle X\rangle =\langle\mathcal{G}\rangle$ holds in $\mathcal{O}_v\langle X\rangle$ ; it follows that, if furthermore $\mathcal{G}\not\subset {\bf m}_v{O}_v\langle X\rangle$ and $k\langle X\rangle /\langle\overline{\mathcal G}\rangle$ is a domain, where $k=\mathcal{O}_v/{\bf m}_v$ is the residue field of $\mathcal{O}_v$ , $k\langle X\rangle =k\langle X_1,...,X_n\rangle$ is the free k-algebra on X 1,...,X n , and $\overline{\mathcal G}$ is the image of $\mathcal{G}$ under the canonical epimorphism $\mathcal{O}_v\langle X\rangle\rightarrow k\langle X\rangle$ , then F v A determines a valuation function A → Γ?∪?{?∞?}, and thereby v extends naturally to a valuation function on the (skew-)field Δ of fractions of A provided Δ exists.  相似文献   

16.
17.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

18.
Given Banach spaces X and Y, we show that, for each operator-valued analytic map ${\alpha \in \mathcal O (D,\mathcal L(Y,X))}$ satisfying the finiteness condition ${\dim (X/\alpha (z)Y) < \infty}$ pointwise on an open set D in ${\mathbb {C}^n}$ , the induced multiplication operator ${\mathcal O(U,Y) \stackrel{\alpha}{\longrightarrow} \mathcal O (U,X)}$ has closed range on each Stein open set ${U \subset D}$ . As an application we deduce that the generalized range ${{\rm R}^{\infty}(T) = \bigcap_{k \geq 1}\sum_{| \alpha | = k} T^{\alpha}X}$ of a commuting multioperator ${T \in \mathcal L(X)^n}$ with ${\dim(X/\sum_{i=1}^n T_iX) < \infty}$ can be represented as a suitable spectral subspace.  相似文献   

19.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

20.
The purpose of this article is to generalize some results of Vatsal on the special values of Rankin–Selberg L-functions in an anticyclotomic \({\mathbb{Z}_{p}}\) -extension. Let g be a cuspidal Hilbert modular newform of parallel weight \({(2,\ldots,2)}\) and level \({\mathcal{N}}\) over a totally real field F, and let K/F be a totally imaginary quadratic extension of relative discriminant \({\mathcal{D}}\) . We study the l-adic valuation of the special values \({L(g,\chi,\frac{1}{2})}\) as \({\chi}\) varies over the ring class characters of K of \({\mathcal{P}}\) -power conductor, for some fixed prime ideal \({\mathcal{P}}\) . We prove our results under the only assumption that the prime to \({\mathcal{P}}\) part of \({\mathcal{N}}\) is relatively prime to \({\mathcal{D}}\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号