首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP-AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP-AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min(-1) and sequentially eluted directly into the ICP-AES with 3 mol L(-1) HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL(-1) level in the eluate is acceptable - less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g(-1) and a capacity of approximately 5 mg g(-1) for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L(-1)) in different water samples.  相似文献   

2.
A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction (CPE). 1-( 2-Pyridylazo)-2-naphthol was used as the chelating reagent and Triton X-114 as the micellar-forming surfactant. CPE was conducted in a pH 8.0 medium at 40 ℃ for 10 min. After the separation of the phases by centrifugation, the surfactant-rich phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20 μL of the diluted surfactant-rich phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconcentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0ng/mL, and the relative standard deviation was found to be less than 3.1% for a sample containing 1.0 ng/mL Cu(Ⅱ). This developed method was successfully applied to the determination of ultratrace amounts of Cu in drinking water, tap water, and seawater samples.  相似文献   

3.
A flow injection analysis-flame atomic absorption spectrometric method for the determination of cadmium in seawater was developed with the aim of yielding a sensitive assay with a low detection limit. The method employs a field flow preconcentration technique involving a minicolumn containing Amberlite XAD-4 impregnated with the complexing agent 4-(2-pyridylazo) resorcinol. A Plackett-Burman 2(7)x3/32 design for seven factors (sample pH, sample flow rate, eluent volume, eluent concentration, eluent flow rate, ethanol percentage in the eluent and minicolumn diameter) was carried out in order to find the significant variables affecting the field continuous preconcentration system (FCPS) and the flow injection elution manifold for cadmium determination in seawater samples by flame atomic absorption spectrometry. Cadmium can be preconcentrated with an enrichment factor of 1053 for a sample volume of 200 mL and a preconcentration time of 57 min. In these experimental conditions, the method provides a linear relationship between absorbance and cadmium concentration in the range from 22-1900 ng L(-1), with a detection limit (3SD) of 6 ng L(-1). The precision (expressed as relative standard deviation) for eleven independent determinations reached values of 8.9-0.8% in cadmium solutions of 50-700 ng L(-1). Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified value. This procedure was applied to the determination of cadmium in seawater from Galicia (Spain).  相似文献   

4.
A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.  相似文献   

5.
Y Cai  G Jiang  J Liu 《The Analyst》2001,126(10):1678-1682
The adsorption characteristics of five commercially available Chromosorb GC stationary phases towards Cd2+ and their application to the preconcentration and ETAAS determination of Cd2+ in several water samples were studied. The experimental results indicated that although all of the five Chromosorb GC stationary phases studied can retain Cd2+ quantitatively from aqueous solutions at appropriate pH values without adding chelating reagent. Chromosorb 105 displayed the highest adsorption capacity. A highly sensitive, simple methodology for preconcentration and ETAAS determination of trace amounts of cadmium in natural water samples using a Chromosorb 105 packed minicolumn is proposed. Conditions for quantitative and reproducible preconcentration, elution and subsequent ETAAS determination were established. The high retention efficiency (> 95%) for Cd2+ provides a sensitivity enhancement of 100-fold for a 200 mL sample volume with a detection limit of 6.2 ng L(-1) (3 sigma).  相似文献   

6.
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward copper has been investigated systemically, and a new method has been developed for the determination of trace copper in water samples based on preconcentration with a microcolumn packed with MWNTs prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of copper, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. Copper can be quantitatively retained by MWNTs in the pH range 5-8, and then eluted completely with 0.5 M HNO3. The detection limit of this method for Cu was 0.42 ng/mL, and the RSD was 3.5% at the 10 ng/mL Cu level. The method was validated using a certified reference material, and has been successfully applied for the determination of trace copper in water samples.  相似文献   

7.
A fully automated procedure for the determination of rhodium has been developed using flow injection (FI) on-line microcolumn preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimisation of subsampling the eluate. Rhodium is adsorbed on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). Under the optimum conditions, using a 60 s preconcentration time, a sample flow rate of 3.5 mL min(-1) and an injection volume of eluent of 50 microL, a linear calibration graph was obtained from 1 to at least 40 ng mL(-1) and the detection limit was 1 ng mL(-1). The proposed method has been successfully applied to the analysis of samples. Its performance was investigated against certified reference catalyst sample SRM-2557 and by recovery measurements on spiked samples (soil, foods and beverages).  相似文献   

8.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP–AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP–AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min–1 and sequentially eluted directly into the ICP–AES with 3 mol L–1 HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL–1 level in the eluate is acceptable – less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g–1 and a capacity of approximately 5 mg g–1 for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L–1) in different water samples.  相似文献   

9.
A chelating resin coupling Amberlite XAD-2 functionalized with dithizone is synthesized and characterized. Dissolved cadmium is field-preconcentrated using a minicolumn packed with the synthesized resin and determined by flame atomic absorption spectrometry. Five experimental variables are evaluated. The enrichment factor of 416 is obtained for 50 mL of sampling volume, and the detection limit (3 sigma) of the procedure is 6.7 ng L(-1). The precision (RSD) for 11 independent determinations is 1.97%. This method has been successfully applied to the determination of cadmium in natural seawater samples.  相似文献   

10.
A novel method for cobalt preconcentration by cloud point extraction with on-line phase separation in a PTFE knotted reactor and further determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed. The cloud point system was formed in the presence of non-ionic micelles of polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) and it was retained on the inner walls of a knotted reactor (KR). The surfactant rich-phase was removed from the knotted reactor with 75 microL of methanol acidified with 0.8 mol L(-1) nitric acid, directly into the dosing hole of the L'Vov graphite tube. An enrichment factor of 15 was obtained with a preconcentration time of 60 s, with respect to the direct determination of cobalt by ETAAS in aqueous solutions. The value of the detection limit for the preconcentration of 5 mL of sample solution was 10 ng L(-1). The precision, expressed as the relative standard deviation (R.S.D.), for 10 replicate determinations at 0.5 microg L(-1) Co level was 4.5%. Verification of the accuracy was carried out by analysis of a standard reference material (NIST SRM 1640e "Trace elements in natural water"). The method was successfully applied to the determination of cobalt in drinking water samples.  相似文献   

11.
Co(III) hexamethylenedithiocarbamate has been applied as a collector in colloid flotation preconcentration of Cd from water prior to electrothermal atomic absorption spectrometry (ETAAS). All experimental parameters necessary for successful flotation have been studied and optimized. The ETAAS results were compared with those obtained by inductive coupled plasma-atomic emission spectrometry (ICP-AES). The ETAAS detection limit was found to be 0.003 microg L(-1) Cd.  相似文献   

12.
The use of ram horn powder (RHP) as a new sorbent for the preconcentration of copper(II) was proposed. The procedure is based on the adsorption of copper(II) ions as 1-nitroso-2-naphthol-3,6-disulfonic acid chelate onto the minicolumn packed with RHP followed by the elution with 5 mL 1 M HCl and determination by flame atomic absorption spectrometry (FAAS). Analytical variables such as pH, eluent type, flow rate, and sample volume were optimized, and analytical parameters such as accuracy and limit of detection were studied. The optimum pH of the sample solution was found to be in a range of 4–8. The enrichment factor when using a sample volume of 500 mL was 100. The capacity of the sorbent was found to be 1.7 mg/g. The limit of detection for copper(II) was 0.42 μg/L. The accuracy of the method was confirmed by analyzing the lead base alloy and aluminum base alloy (NBS SRM 53e, NBS SRM 85b). The results demonstrated good agreement with the certified values. The procedure was applied to the determination of copper in aluminum foil and different waters, such as tap water, lake water, dam water, and synthetic seawater samples. The text was submitted by the authors in English.  相似文献   

13.
The multivariate interference effects due to nitrates of sodium, potassium, magnesium and calcium on electrothermal atomization of manganese were modelled by using the multiple linear regression method in conjunction with a suitable experimental design. Since the model proved to be able to efficiently predict the simultaneous effects of the considered salts in a wide range of concentrations, it was applied to provide a computational correction of the matrix effects occurring in the ETAAS analysis of manganese in seawater, after preconcentration of the analyte on Chelex-100 resin and elution with nitric acid. Preliminary results showed that the matrix effects are significantly reduced, leading to an improvement in accuracy of the ETAAS analysis.  相似文献   

14.
An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 degrees C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L(-1)). 140 mg of yeast and 2h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 microg L(-1). In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L(-1) thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L(-1), respectively, using ICP-MS, 7 and 0.9 microg L(-1) using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n=3) were in the 2-5% range at the tenth microg L(-1) level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 microg L(-1)). Corrected recoveries were in all cases close to 100%.  相似文献   

15.
Thallium in potassium chloride and electrolyte replenishers was determined by electrothermal atomic absorption spectrometry (ETAAS) with direct injection of a resin suspension. Thallium(III) was extracted on fine particles of a cellulose nitrate resin (CNR) from dilute HCl (pH 1.6) in the presence of ammonium pyrrolidine-1-carbodithioate. The CNR particles were collected on a membrane filter by filtration under suction, suspended in 1.0 mL 10mM HNO3, and then delivered directly to ETAAS as the suspension. The effects of chloride ions were thoroughly investigated. The results showed that the addition of 0.5mM NaCl to the suspension (10mM HNO3) was recommended, after CNR and a membrane filter holding the CNR were washed thoroughly with 0.025M HCl, to eliminate interference from chloride ions. No chemical modifier was required. Extraction from the solution containing up to 2M chloride ion was allowable. The proposed method gave a concentration factor of 50 for a 50 mL sample volume. The detection limit (3sigma, n = 5) was 1 ng (20 pg/mL). The relative standard deviation was 4.9% (n = 5) at 30 ng level of thallium. The content of thallium in potassium chloride was 15.7-32.8 ng/g, and in electrolyte replenishers was 0.18-4.16 ng/mL.  相似文献   

16.
A new simple and reliable method has been developed to separate and preconcentrate trace copper ion in drinking water and tea samples for subsequent measurement by flame atomic absorption spectrometry (FAAS). The copper ions are adsorbed quantitatively during passage of aqueous solutions through Amberlyst 36 cation exchange resin. After the separation and preconcentration stage, the analyte was eluted with a potassium cyanide solution and determined by FAAS. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of aqueous solution, volume and concentration of eluent, and matrix effects for preconcentration were examined. The analytical figures of merit for the determination of copper are as follows: analytical detection limit (3 sigma), 0.26 microg/L; precision (RSD), 3.1% for 100 microg/L; enrichment factor, 200 (using 1000 mL of sample solution and 5 mL of eluent); time of analysis, 3.5 h (for obtaining enrichment factor of 200); capacity of resin, 125 mg/g. The method was applied for copper determination by FAAS in tap water, commercial natural spring water, commercial treated drinking water, and commercial tea bag sample. The accuracy of the method is confirmed by analyzing tea leaves (GBW 07605). The results demonstrated good agreement with the certified values.  相似文献   

17.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

18.
On-line system incorporating a microcolumn of Muromac A-1 resin was used for the developing of method for preconcentration of trace elements followed by inductively coupled plasma (ICP) atomic emission spectrometry determination. A chelating type ion exchange resin has been characterized regarding the sorption and subsequent elution of 24 elements, aiming to their preconcentration from water samples of different origins. The effect of column conditioning, pH and flow rate during the preconcentration step, and the nature of the acid medium employed for desorption of the retained elements were investigated. A sample (pH 5) is pumped through the column at 3 ml min−1 and sequentially eluted directly to the ICP with 3 M HNO3/HCl mixtures. In order to remove residual matrix elements from the column after sample loading a short buffer wash was found to be necessary. The effectiveness of the matrix separation process was illustrated. The procedure was validated by analyzing several simple matrices, Standard River water sample as well as artificial seawater. Proposed method can be applied for simultaneous determination of In, Tl, Ti, Y, Cd, Co, Cu and Ni in seawater and for multielement trace analysis of river water. Recovery at 1 μg l−1 level for the determination of investigated 24 elements in pure water ranged from 93.1 to 96% except for Pd (82.2%) and Pb (88.1%). For the same concentration level for seawater analysis recovery was between 81.9 and 95.6% except for Hg (38.2%).  相似文献   

19.
The changes in the oxidation state of vanadium in artificial and natural seawater samples were studied by electrothermal atomic absorption spectrometry (ETAAS) with a direct injection of a resin suspension. V(IV) and V(V) were extracted as the complex with Chromazurol B and with N-cinnamoyl-N-2,3-xylylhydroxylamine, respectively, using a suspension of an anion-exchange resin and determined by ETAAS independently. The detection limits of both methods were 0.02 ng ml(-1) for 40 ml of a sample solution. The recovery tests for an artificial seawater sample spiked with V(IV) and/or V(V) were carried out carefully. The results showed that the recoveries of V(IV) or V(V) were 99.2-109% and the standard deviations were 1-6%. The total V was also determined after V(V) was reduced by ascorbic acid. In artificial seawater at pH 7.8, V(V) was stable but V(IV) was oxidized rapidly. In acidified artificial seawater (pH 2.0), V(IV) was oxidized slowly but only a small tendency of such reduction of V(V) was observed. In a natural seawater sample, V(IV) was not detected. The acidification of the natural seawater sample resulted in the reduction of V(V).  相似文献   

20.
This review focuses on the determination of uranium using spectroanalytical techniques that are aimed at total determination such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma optical emission spectrometry (ICP-OES); and inductively coupled plasma mass spectrometry (ICP-MS) that also enables the determination of uranium isotopes. The advantages and shortcomings related to interferences, precision, accuracy, sample type and equipment employed in the analysis are taken into account, as well as the complexity and costs (i.e., acquisition, operation and maintenance) associated with each of the techniques. Strategies to improve their performance that employ separation and/or preconcentration steps are considered, with an emphasis given to solid-phase extraction because of its advantages compared to other preconcentration procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号