首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

2.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

3.
Ab initio MP2/aug’-cc-pVTZ calculations have been performed on the complexes (CO)2(HB):PXH2 and (N2)2(HB):PXH2, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, in order to investigate the properties of these complexes which are stabilized by P B pnicogen bonds, with B the electron-pair donor. The binding energies of these complexes exhibit an exponential dependence on the P-B distance, but they do not correlate with the MEP minima for (CO)2(HB) and (N2)2(HB), nor with the MEP maxima for PXH2. For fixed X, the binding energy of (N2)2(HB):PXH2 is greater than that of (CO)2(HB):PXH2. Charge-transfer stabilizes both series of complexes, and occurs from the B electron pair to the antibonding P-A σ orbital, with A the atom of X directly bonded to P. These charge-transfer energies also exhibit an exponential dependence on the P-B distance. In the complexes (CO)2(HB):PXH2, there is a second charge-transfer interaction from the lone pair on P to the antibonding π orbitals of the two C-O groups. Electron density analyses indicate that the P B bonds in these complexes are stabilized by relatively weak interactions with little covalent character. The chemical shieldings of 11B are essentially unaffected by complex formation. In contrast, the shieldings of 31P increase from 10 to 50 ppm in the four most strongly bound complexes, but decrease by ?4 to ?12 ppm in the remaining complexes. For each series of complexes, EOM-CCSD spin-spin coupling constants 1pJ(P-B) increase quadratically with decreasing P-B distance. For fixed X, 1pJ(P-B) is greater for (CO)2(HB):PXH2 compared to (N2)2(HB):PXH2.  相似文献   

4.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

5.
The hydride complex K[(η5‐C5H5)Mn(CO)2H] reacted with a range of dihalo(organyl)boranes X2BR (X = Cl, Br; R = tBu,Mes, Ferrocenyl) to give the corresponding borane complexes[(η5‐C5H5)Mn(CO)2(HB(X)R)]., The presence of a hydride in bridging position between manganese and boron was deduced from 11B decoupled 1H NMR spectra. Additionally, the structure of the tert‐butyl borane complex was confirmed by single‐crystal X‐ray diffraction.  相似文献   

6.
Series of typical π‐type and pseudo‐π‐type halogen‐bonded complexes B ··· ClY and B ··· BrY and hydrogen‐bonded complex B ··· HY (B = C2H4, C2H2, and C3H6; Y = F, Cl, and Br) have been investigated using the MP2/aug‐cc‐pVDZ method. A striking parallelism was found in the geometries, vibrational frequencies, binding energies, and topological properties between B ··· XY and B ··· HY (X = Cl and Br). It has been found that the lengths of the weak bond d(X ··· π)/d(H ··· π), the frequencies of the weak bond ν(X ··· π)/ν(H ··· π), the frequency shifts Δν(X? Y)/Δν(H? Y), the electron densities at the bond critical point of the weak bonds ρc(X ··· π)/ρc(H ··· π), and the electron density changes Δρc(X? Y)/Δρc(H? Y) could be used as measures of the strengths of typical π‐type and pseudo‐π‐type halogen/hydrogen bonds. The typical π‐type and pseudo‐π‐type halogen bond and hydrogen bond are noncovalent interactions. For the same Y, the halogen bond strengths are in the order B ··· ClY < B ··· BrY. For the same X, the halogen bond strength decreases according to the sequence F > Cl > Br that is in agreement with the hydrogen bond strengths B ··· HF > B ··· HCl > B ··· HBr. All of these typical π‐type and pseudo‐π‐type hydrogen‐bonded and halogen‐bonded complexes have the “conflict‐type” structure. Contour maps of the Laplacian of π electron density indicate that the formation of B ··· XY halogen‐bonded complex and B ··· HY hydrogen‐bonded complex is very similar. Charge transfer is observed from B to XY/HY and both the dipolar polarization and the volume of the halogen atom or hydrogen atom decrease on B ··· XY/B ··· HY complex formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
We designed M1???C6H5X???HM2 (M1=Li+, Na+; X=Cl, Br; M2=Li, Na, BeH, MgH) complexes to enhance halogen–hydride halogen bonding with a cation–π interaction. The interaction strength has been estimated mainly in terms of the binding distance and the interaction energy. The results show that halogen–hydride halogen bonding is strengthened greatly by a cation–π interaction. The interaction energy in the triads is two to six times as much as that in the dyads. The largest interaction energy is ?8.31 kcal mol?1 for the halogen bond in the Li+???C6H5Br???HNa complex. The nature of the cation, the halogen donor, and the metal hydride influence the nature of the halogen bond. The enhancement effect of Li+ on the halogen bond is larger than that of Na+. The halogen bond in the Cl donor has a greater enhancement than that in the Br one. The metal hydride imposes its effect in the order HBeH<HMgH<HNa<HLi for the Cl complex and HBeH<HMgH<HLi<HNa for the Br complex. The large cooperative energy indicates that there is a strong interplay between the halogen–hydride halogen bonding and the cation–π interaction. Natural bond orbital and energy decomposition analyses indicate that the electrostatic interaction plays a dominate role in enhancing halogen bonding by a cation–π interaction.  相似文献   

8.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

9.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

10.
The resonance character of Cu/Ag/Au bonding is investigated in B???M?X (M=Cu, Ag, Au; X=F, Cl, Br, CH3, CF3; B=CO, H2O, H2S, C2H2, C2H4) complexes. The natural bond orbital/natural resonance theory results strongly support the general resonance‐type three‐center/four‐electron (3c/4e) picture of Cu/Ag/Au bonding, B:M?X?B+?M:X?, which mainly arises from hyperconjugation interactions. On the basis of such resonance‐type bonding mechanisms, the ligand effects in the more strongly bound OC???M?X series are analyzed, and distinct competition between CO and the axial ligand X is observed. This competitive bonding picture directly explains why CO in OC???Au?CF3 can be readily replaced by a number of other ligands. Additionally, conservation of the bond order indicates that the idealized relationship bB???M+bMX=1 should be suitably generalized for intermolecular bonding, especially if there is additional partial multiple bonding at one end of the 3c/4e hyperbonded triad.  相似文献   

11.
The covalent nature of strong N?Br???N halogen bonds in a cocrystal ( 2 ) of N‐bromosuccinimide ( NBS ) with 3,5‐dimethylpyridine ( lut ) was determined from X‐ray charge density studies and compared to a weak N?Br???O halogen bond in pure crystalline NBS ( 1 ) and a covalent bond in bis(3‐methylpyridine)bromonium cation (in its perchlorate salt ( 3 ). In 2 , the donor N?Br bond is elongated by 0.0954 Å, while the Br???acceptor distance of 2.3194(4) is 1.08 Å shorter than the sum of the van der Waals radii. A maximum electron density of 0.38 e Å?3 along the Br???N halogen bond indicates a considerable covalent contribution to the total interaction. This value is intermediate to 0.067 e Å?3 for the Br???O contact in 1 , and approximately 0.7 e Å?3 in both N?Br bonds of the bromonium cation in 3 . A calculation of the natural bond order charges of the contact atoms, and the σ*(N1?Br) population of NBS as a function of distance between NBS and lut , have shown that charge transfer becomes significant at a Br???N distance below about 3 Å.  相似文献   

12.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

13.
The role of halogen bonds in self‐assembled networks for systems with Br and I ligands has recently been studied with scanning tunneling microscopy (STM), which provides physical insight at the atomic scale. Here, we study the supramolecular interactions of 1,5‐dichloroanthraquinone molecules on Au(111), including Cl ligands, by using STM. Two different molecular structures of chevron and square networks are observed, and their molecular models are proposed. Both molecular structures are stabilized by intermolecular Cl???H and O???H hydrogen bonds with marginal contributions from Cl‐related halogen bonds, as revealed by density functional theory calculations. Our study shows that, in contrast to Br‐ and I‐related halogen bonds, Cl‐related halogen bonds weakly contribute to the molecular structure due to a modest positive potential (σ hole) of the Cl ligands.  相似文献   

14.
Ab initio MP2/aug′‐cc‐pVTZ calculations are used to investigate the binary complexes H2XP:HF, the ternary complexes H2XP:(FH)2, and the quaternary complexes H2XP:(FH)3, for X=CH3, OH, H, CCH, F, Cl, NC, and CN. Hydrogen‐bonded (HB) binary complexes are formed between all H2XP molecules and FH, but only H2FP, H2ClP, and H2(NC)P form pnicogen‐bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F?H???P and F?H???F hydrogen bonds and F???P pnicogen bonds, except for H2(CH3)P:(FH)2 and H3P:(FH)2, which do not have pnicogen bonds. All quaternary complexes H2XP:(FH)3 are stabilized by both F?H???P and F?H???F hydrogen bonds and P???F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ‐hole and the lone pair at P in these complexes. The binding energies of H2XP:(FH)3 complexes are significantly greater than the binding energies of H2XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone‐pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge‐transfer energies across the pnicogen bond correlate with the intermolecular P?F distance, while charge‐transfer energies across F?H???P and F?H???F hydrogen bonds correlate with the distance between the lone‐pair donor atom and the hydrogen‐bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron‐donor atom and the hydrogen‐bonded F atom. EOM‐CCSD spin‐spin coupling constants 2hJ(F–P) across F?H???P hydrogen bonds, and 1pJ(P–F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F–P coupling data than pnicogen bonds, despite the longer F???P distances in F?H???P hydrogen bonds compared to P???F pnicogen bonds. There is a correlation between the two bond coupling constants 2hJ(F–F) in the quaternary complexes and the corresponding intermolecular distances, but not in the ternary complexes, a reflection of the distorted geometries of the bridging dimers in ternary complexes.  相似文献   

15.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

16.
The ligand 1,3‐bis[3‐oxo‐3‐(2‐hydroxyphenyl)propionyl]benzene (H4L), designed to align transition metals into tetranuclear linear molecules, reacts with MII salts (M=Ni, Co, Cu) to yield complexes with the expected [MM???MM] topology. The novel complexes [Co4L2(py)6] ( 2 ; py=pyridine) and [Na(py)2][Cu4L2(py)4](ClO4) ( 3 ) have been crystallographically characterised. The metal sites in complexes 2 and 3 , together with previously characterised [Ni4L2(py)6] ( 1 ), favour different coordination geometries. These have been exploited for the deliberate synthesis of the heterometallic complex [Cu2Ni2L2(py)6] ( 4 ). Complexes 1 , 2 , 3 and 4 exhibit antiferromagnetic interactions between pairs of metals within each cluster, leading to S=0 spin ground states, except for the latter cluster, which features two quasi‐independent S=1/2 moieties within the molecule. Complex 4 gathers the structural and physical conditions, thus allowing it to be considered as prototype of a two‐qbit quantum gate.  相似文献   

17.
The title compound, (C11H22N3)[FeCl3(C11H21N3)], is one of the rare examples where an isolated ionic pair of the type [A]n+[EMX3]n (E is any non‐metal, M is any transition metal and X is any halogen) could be structurally characterized. Two short N—H⋯Cl contacts between the two ammonium H atoms and two of the three Cl atoms of the counter‐anion generate a six‐membered ring. The third Cl atom is involved in a weaker intra­molecular hydrogen bond to the neutral 1,3‐diisopropyl‐4,5‐dimethyl‐4‐imidazolin‐2‐yl­idene­amine ligand.  相似文献   

18.
The vitamin‐B12 derivative 11 , incorporating a peripheral N4‐acetylcytosine moiety, was alkylated under reductive conditions with 2‐(iodomethyl)‐2‐methylmonothiomalonate 8 bearing the complementary guanine moiety. The reaction yielded a mixture of vitamin‐B12‐derived complexes with variations in the cytosine moiety: products 16 – 18 with a cytosine, a N4‐acetylated cytosine, and a N4‐acetylated reduced cytosine moiety were formed (see Scheme 5). The complexes were photolyzed in CHCl3/MeCN to yield the dimethylmalonate derivative 22 (Scheme 6) but not the rearranged succinate, in contrast to the results obtained earlier with complexes incorporating the A⋅T base pair (see Scheme 1).  相似文献   

19.
The coordination chemistry of mixed‐ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal–organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic–inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene‐2‐carboxylate (2‐TPC) and 2‐amino‐4,6‐dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X‐ray diffraction studies, namely (2‐amino‐4,6‐dimethoxypyrimidine‐κN)aquachlorido(thiophene‐2‐carboxylato‐κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena‐poly[copper(II)‐tetrakis(μ‐thiophene‐2‐carboxylato‐κ2O:O′)‐copper(II)‐(μ‐2‐amino‐4,6‐dimethoxypyrimidine‐κ2N1:N3)], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the CoII ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2‐TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2‐TPC ligand form an interligand N—H…O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R22(8) motif] via a pair of N—H…N hydrogen bonds. These interactions, together with O—H…O and O—H…Cl hydrogen bonds and π–π stacking interactions, generate a three‐dimensional supramolecular architecture. The one‐dimensional coordination polymer (II) contains the classical paddle‐wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2‐TPC ligands bridges two square‐pyramidally coordinated CuII ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one‐dimensional polymeric chains self‐assemble via N—H…O, π–π and C—H…π interactions, generating a three‐dimensional supramolecular architecture.  相似文献   

20.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号