首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

2.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

3.
A new approach to probe the effect of graphene on photochemical charge separation in donor–acceptor conjugates is devised. For this, multimodular donor–acceptor conjugates, composed of three molecules of pyrene, a subphthalocyanine, and a fullerene C60 ((Pyr)3SubPc‐C60), have been synthesized and characterized. These systems were hybridized on few‐layer graphene through π–π stacking interactions of the three pyrene moieties. The hybrids were characterized using Raman, HRTEM, and spectroscopic and electrochemical techniques. The energy levels of the donor–acceptor conjugates were fine‐tuned upon interaction with graphene and photoinduced charge separation in the absence and presence of graphene was studied by femtosecond transient absorption spectroscopy. Accelerated charge separation and recombination was detected in these graphene‐decorated conjugates suggesting that they could be used as materials for fast‐responding optoelectronic devices and in light energy harvesting applications.  相似文献   

4.
In the ionic charge‐transfer (CT) complex composed of bis(ethylenedithio)tetrathiafulvalene (ET) and 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), C10H8S8·C8Cl2N2O2, the donor and acceptor molecules both form centrosymmetric dimers associated by strong face‐to‐face π–π interactions. The disordered DDQ molecules form a one‐dimensional π‐stacked column, while the ET molecules form a two‐leg ladder through additional short S...S contacts between adjacent π–π‐bonded dimers. The crystal structure of ET–DDQ revealed in this study will provide a valuable example of the two‐leg spin ladder system, which has rarely been reported for ET‐based CT complexes.  相似文献   

5.
The structures of orthorhombic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate dihydrate, C8H8Cl2N4O·2H2O, (I), triclinic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate methanol disolvate, C8H8Cl2N4O·2CH4O, (II), and orthorhombic (E)‐amino[(2,6‐dichloro‐4‐hydroxystyryl)amino]methaniminium acetate, C8H9Cl2N4O+·C2H3O2, (III), all crystallize with one formula unit in the asymmetric unit, with the molecule in an E configuration and the phenol H atom transferred to the guanidine N atom. Although the molecules of the title compounds form extended chains via hydrogen bonding in all three forms, owing to the presence of different solvent molecules, those chains are connected differently in the individual forms. In (II), the molecules are all coplanar, while in (I) and (III), adjacent molecules are tilted relative to one another to varying degrees. Also, because of the variation in hydrogen‐bond‐formation ability of the solvents, the hydrogen‐bonding arrangements vary in the three forms.  相似文献   

6.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

7.
The solid‐state structures of three push–pull acceptor‐π‐donor (A‐π‐D) systems differing only in the nature of the π‐spacer have been determined. (E)‐1‐Nitro‐4‐[2‐(3,4,5‐trimethoxyphenyl)ethenyl]benzene, C17H17NO5, (I), and its `bridge‐flipped' imine analogues, (E)‐3,4,5‐trimethoxy‐N‐(4‐nitrobenzylidene)aniline, C16H16N2O5, (II), and (E)‐4‐nitro‐N‐(3,4,5‐trimethoxybenzylidene)aniline, C16H16N2O5, (III), display different kinds of supramolecular networks, viz. corrugated planes, a herringbone pattern and a layered structure, respectively, all with zero overall dipole moments. Only (III) crystallizes in a noncentrosymmetric space group (P212121) and is, therefore, a potential material for second‐harmonic generation (SHG).  相似文献   

8.
New ternary Cu(II)‐chelates with the general formula [ML L′(H2O)x] (NO3)y x (H2O), x = 0–2 and y = 0–1, (L) = 5‐acetyl‐4‐hydroxy‐2H‐1,3‐thiazine‐2,6(3H)‐dione with in the presence of a secondary ligand (L′) [N,O‐donor; 8 hydroxyquinoline or N,N‐donor; 1,10‐phenanthroline and diethethylendiamine]. Characterization of the synthesized complexes was established based on elemental analysis, molar conductance, magnetic susceptibility measurements, spectral (infrared, electronic, mass, 1H‐NMR and ESR) as well as thermal gravimetric analysis (TGA). The complexes exhibited octahedral and square planer geometry. The antimicrobial activity for the studied complexes was tested for different kind of organisms. The geometrical and non‐linear optical parameters of the studied complexes 1–3 are investigated theoretically at the B3LYP/GENECP level of theory. The optimized geometries of the studied complexes are non‐planner as indicated from the dihedral angles. The natural charge population (core, valence and Rydberg), exact electronic configuration, total Lewis, and total non‐Lewis is computed and discussed in terms of natural bond orbitals (NBO) analysis. The calculated EHOMO and ELUMO energies at the same level of theory of the studied complexes were used to calculate the global properties; hardness (η), global softness (S), electrophilicity (ω) and electronegativity (χ). The total dipole moment (μtot), total and anisotropy of polarizability (? α ?), (Δα) and first hyperpolarizability (? β ?) values were calculated and compared with urea as a reference compound. From the values of the computed first hyperpolarizability (? β ?), the ligand and the studied complexes show promising optical properties.  相似文献   

9.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

10.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

11.
This analysis of the title compound, C13H13F2IO3, establishes the orientation of (E)‐5‐(CH=CH—I) as antiperiplanar (ap) to the C—C bond (5–6 position) of the 2,4‐di­fluoro­phenyl ring system, with the (E)‐5‐(CH=CH—I) H atom located in close proximity (2.17 Å) to the F4 atom of the 2,4‐di­fluoro­phenyl moiety.  相似文献   

12.
The steric and electronic requirements have been investigated for the synthesis of 2,3‐dihydro‐4(1H)‐quinolinones by the tandem Michael‐SNAr reaction. Substrates bearing a single methyl group at the β‐enone carbon gave excellent yields of the title compounds from both the E and Z isomers with X═H or NO2. Substrates with β,β‐dimethyl substitution at the Michael terminus gave low yields of heterocyclic products in molecules having monoactivated SNAr aromatic acceptor rings (X═H) and very good yields for diactivated systems (X═NO2). For these hindered substrates, success in the final cyclization hinges on the ability of the aromatic acceptor to capture the pendant nitrogen nucleophile of the initial Michael adduct before this intermediate can revert to starting materials.  相似文献   

13.
胡荣华  陈桂琴  蔡明中 《中国化学》2007,25(12):1927-1931
(E)-α-Stannylvinyl phenyl(or p-tolyl)sulfones underwent an iododestannylation reaction to afford (E)-α-iodovinyl phenyl(or p-tolyl)sulfones 1, which reacted with (E)-alkenylzirconium(IV) complexes 2 produced in situ by hydrozirconation of terminal alkynes in the presence of a Pd(PPh3)4 catalyst to afford stereoselectively (1Z,3E)-2- phenyl(or p-tolyl)sulfonyl-substituted 1,3-dienes 3 in good yields.  相似文献   

14.
3,5‐Bis(arylidene)‐4‐piperidone (BAP) derivatives display good antitumour and anti‐inflammatory activities because of their double α,β‐unsaturated ketone structural characteristics. If N‐benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti‐inflammatory activities should improve. Four N‐benzenesulfonyl BAPs, namely (3E,5E)‐1‐(4‐methylbenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, ( 4 ), (3E,5E)‐1‐(4‐fluorobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F7NO3S, ( 5 ), (3E,5E)‐1‐(4‐nitrobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F6N2O5S, ( 6 ), and (3E,5E)‐1‐(4‐cyanobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, ( 7 ), were prepared by Claisen–Schmidt condensation and N‐sulfonylation. They were characterized by NMR, FT–IR and HRMS (high resolution mass spectrometry). Single‐crystal structure analysis reveals that the two 4‐(trifluoromethyl)phenyl rings on both sides of the piperidone ring in ( 4 )–( 7 ) adopt an E stereochemistry of the olefinic double bonds. Molecules of both ( 4 ) and ( 6 ) are connected by hydrogen bonds into one‐dimensional chains. In ( 5 ) and ( 7 ), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two‐dimensional sheet. The anti‐inflammatory activity data reveal that ( 4 )–( 7 ) significantly inhibit LPS‐induced interleukin (IL‐6) and tumour necrosis factor (TNF‐α) secretion. Most importantly, ( 6 ) and ( 7 ), with strong electron‐withdrawing substituents, display more potential inhibitory effects than ( 4 ) and ( 5 ).  相似文献   

15.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

16.
Two polymorphs of (E,E)‐N,N′‐bis(4‐nitrobenzylidene)benzene‐1,4‐diamine, C20H14N4O4, (I), have been identified. In each case, the molecule lies across a crystallographic inversion centre. The supramolecular structure of the first polymorph, (I‐1), features stacking based on π–π interactions assisted by weak hydrogen bonds involving the nitro groups. The second polymorph, (I‐2), displays a perpendicular arrangement of molecules linked via the nitro groups, combined with weak C—H...O hydrogen bonds. Both crystal structures are compared with that of the carbon analogue (E,E)‐1,4‐bis[2‐(4‐nitrophenyl)ethenyl]benzene, (II).  相似文献   

17.
Oligomeric Condensation Products of (1 E ,3 E ,5 E )‐1,6‐Di(2‐furyl)hexa‐1,3,5‐triene with Acetaldehyde: Tetrahydro‐tetramethyl‐octaepoxy[60]annulene(6.1.6.1.6.1.6.1) The Ca(NO3)2‐induced condensation of (1E,3E,5E)‐1,6‐di(2‐furyl)hexa‐1,3,5‐triene ( 6 ) with acetaldehyde yields the linear ‘oligomers' 7 – 11 with 2–6 1,6‐di(2‐furyl)hexa‐1,3,5‐triene units and 1–4 acetaldehyde units, besides a cyclic condensation product 12 obtained from 4 equiv. of 6 with 4 equiv. of acetaldehyde. According to spectroscopic studies, 12 is the tetrahydro‐tetramethyl‐octaepoxy[60]annulene(6.1.6.1.6.1.6.1) as the most expanded annulene system known so far. While the dehydrogenation of 12 to give the tetramethyl‐octaepoxy[60]annulene(6.1.6.1.6.1.6.1) cannot be achieved, the oxidation of 12 with Br2 yields a black, in all organic solvents nearly insoluble solid 14 , which possibly is the tetramethyl‐octaepoxy[58]annulene(6.1.6.1.6.1.6.1) dication. Because of the insolubility of 14 , unfortunately most of its spectroscopic data are not available. However, the λmax values in the UV/VIS/NIR spectrum of 14 (Soret and Q bands) are in line with the values of the tetraepoxy[26]annulene(4.2.4.2) dication, the tetraepoxy[30]annulene(4.4.4.4) dication, and the tetraepoxy[34]annulene(6.4.6.4) dication.  相似文献   

18.
The zinc(II) pseudohalide complexes {[Zn(L334)(SCN)2(H2O)](H2O)2}n ( 1 ) and [Zn(L334)(dca)2]n ( 2 ) were synthesized and characterized using the ligand 3,4‐bis(3‐pyridyl)‐5‐(4‐pyridyl)‐1,2,4‐triazole (L334) and ZnCl2 in presence of thiocyanate (SCN) and dicynamide [dca, N(CN)2] respectively. Single‐crystal X‐ray structural analysis revealed that the central ZnII atoms in both complexes have similar octahedral arrangement. Compound 1 has a 2D sheet structure bridged by bidentate L334 and double μN,S‐thiocyanate anions, whereas complex 2 , incorporating with two monodentate dicynamide anions, displays a two‐dimensional coordination framework bridged by tetradentate L334 ligand. Structural analysis demonstrated that the influence of pseudohalide anions plays an important role in determining the resultant structure. Both complexes were characterized by IR spectroscopy, microanalysis, and powder X‐ray diffraction techniques. In addition, the solid fluorescence and thermal stability properties of both complexes were investigated.  相似文献   

19.
The molecules of the title compound, C26H25N3OS, which was prepared by means of an acid‐catalysed cyclocondensation reaction between a 6‐aminopyrimidinone and 2,6‐dibenzylidenecyclohexanone, exhibit a polarized electronic structure, namely (9E)‐9‐benzylidene‐3‐methyl‐2‐methylsulfanyl‐5‐phenyl‐3,5,6,7,8,9‐hexahydropyrimido[4,5‐b]quinolin‐10‐ium‐4‐olate, involving charge separation in the vinylogous amide portion. Four hydrogen bonds, two each of the C—H...O and C—H...π(arene) types, link the molecules into bilayers comprising inversion‐related pairs of sheets, each containing a single type of R43(36) ring.  相似文献   

20.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号