首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Listening difficulty ratings, using words with high word familiarity, are proposed as a new subjective measure for the evaluation of speech transmission in public spaces to provide realistic and objective results. Two listening tests were performed to examine their validity, compared with intelligibility scores. The tests included a reverberant signal and noise as detrimental sounds. The subject was asked to repeat each word and simultaneously to rate the listening difficulty into one of four categories: (1) not difficult, (2) a little difficult, (3) fairly difficult, and (4) extremely difficult. After the tests, the four categories were reclassified into, not difficult [response (1)] and some level of difficulty, (the other 3 responses). Listening difficulty is defined as the percentage of the total number of responses indicating some level of difficulty [i.e. not (1)]. The results of two listening tests demonstrated that listening difficulty ratings can evaluate speech transmission performance more accurately and sensitively than intelligibility scores for sound fields with higher speech transmission performance.  相似文献   

2.
For ideal speech communication in public spaces, it is important to determine the optimum speech level for various background noise levels. However, speech intelligibility scores, which is conventionally used as the subjective listening test to measure the quality of speech communication, is near perfect in most everyday situations. For this reason, it is proposed to determine optimum speech levels for speech communication in public spaces by using listening difficulty ratings. Two kinds of listening test were carried out in this work. The results of the tests and our previous work [M. Morimoto, H. Sato, and M. Kobayashi, J. Acoust. Soc. Am. 116, 1607-1613 (2004)] are jointly discussed for suggesting the relation between the optimum speech level and background noise level. The results demonstrate that: (1) optimum speech level is constant when background noise level is lower than 40 dBA, (2) optimum speech level appears to be the level, which maintains around 15 dBA of SN ratio when the background noise level is more than 40 dBA, and (3) listening difficulty increases as speech level increases under the condition where SN ratio is good enough to keep intelligibility near perfect.  相似文献   

3.
The acceptable range of speech level as a function of background noise level was investigated on the basis of word intelligibility scores and listening difficulty ratings. In the present study, the acceptable range is defined as the range that maximizes word intelligibility scores and simultaneously does not cause a significant increase in listening difficulty ratings from the minimum ratings. Listening tests with young adult and elderly listeners demonstrated the following. (1) The acceptable range of speech level for elderly listeners overlapped that for young listeners. (2) The lower limit of the acceptable speech level for both young and elderly listeners was 65 dB (A-weighted) for noise levels of 40 and 45 dB (A-weighted), a level with a speech-to-noise ratio of +15 dB for noise levels of 50 and 55 dB, and a level with a speech-to-noise ratio of +10 dB for noise levels from 60 to 70 dB. (3) The upper limit of the acceptable speech level for both young and elderly listeners was 80 dB for noise levels from 40 to 55 dB and 85 dB or above for noise levels from 55 to 70 dB.  相似文献   

4.
Annoyance ratings in speech intelligibility tests at 45 dB(A) and 55 dB(A) traffic noise were investigated in a laboratory study. Subjects were chosen according to their hearing acuity to be representative of 70-year-old men and women, and of noise-induced hearing losses typical for a great number of industrial workers. These groups were compared with normal hearing subjects of the same sex and, when possible, the same age. The subjects rated their annoyance on an open 100 mm scale. Significant correlations were found between annoyance expressed in millimetres and speech intelligibility in percent when all subjects were taken as one sample. Speech intelligibility was also calculated from physical measurements of speech and noise by using the articulation index method. Observed and calculated speech intelligibility scores are compared and discussed. Also treated is the estimation of annoyance by traffic noise at moderate noise levels via speech intelligibility scores.  相似文献   

5.
A number of objective evaluation methods are currently used to quantify the speech intelligibility in a built environment, including the speech transmission index (STI), rapid speech transmission index (RASTI), articulation index (AI), and the percent articulation loss of consonants (%ALCons). Certain software programs can quickly evaluate STI, RASTI, and %ALCons from a measured room impulse response. In this project, two impulse-response-based software packages (WinMLS and SIA-Smaart Acoustic Tools) were evaluated for their ability to determine intelligibility accurately. In four different spaces with background noise levels less than NC 45, speech intelligibility was measured via three methods: (1) with WinMLS 2000; (2) with SIA-Smaart Acoustic Tools (v4.0.2); and (3) from listening tests with humans. The study found that WinMLS measurements of speech intelligibility based on STI, RASTI, and %ALCons corresponded well with performance on the listening tests. SIA-Smaart results were correlated to human responses, but tended to under-predict intelligibility based on STI and RASTI, and over-predict intelligibility based on %ALCons.  相似文献   

6.
Although the speech transmission index (STI) is a well-accepted and standardized method for objective prediction of speech intelligibility in a wide range of environments and applications, it is essentially a monaural model. Advantages of binaural hearing in speech intelligibility are disregarded. In specific conditions, this leads to considerable mismatches between subjective intelligibility and the STI. A binaural version of the STI was developed based on interaural cross correlograms, which shows a considerably improved correspondence with subjective intelligibility in dichotic listening conditions. The new binaural STI is designed to be a relatively simple model, which adds only few parameters to the original standardized STI and changes none of the existing model parameters. For monaural conditions, the outcome is identical to the standardized STI. The new model was validated on a set of 39 dichotic listening conditions, featuring anechoic, classroom, listening room, and strongly echoic environments. For these 39 conditions, speech intelligibility [consonant-vowel-consonant (CVC) word score] and binaural STI were measured. On the basis of these conditions, the relation between binaural STI and CVC word scores closely matches the STI reference curve (standardized relation between STI and CVC word score) for monaural listening. A better-ear STI appears to perform quite well in relation to the binaural STI model; the monaural STI performs poorly in these cases.  相似文献   

7.
The word recognition ability of 4 normal-hearing and 13 cochlearly hearing-impaired listeners was evaluated. Filtered and unfiltered speech in quiet and in noise were presented monaurally through headphones. The noise varied over listening situations with regard to spectrum, level, and temporal envelope. Articulation index theory was applied to predict the results. Two calculation methods were used, both based on the ANSI S3.5-1969 20-band method [S3.5-1969 (American National Standards Institute, New York)]. Method I was almost identical to the ANSI method. Method II included a level- and hearing-loss-dependent calculation of masking of stationary and on-off gated noise signals and of self-masking of speech. Method II provided the best prediction capability, and it is concluded that speech intelligibility of cochlearly hearing-impaired listeners may also, to a first approximation, be predicted from articulation index theory.  相似文献   

8.
The speech level of verbal information in public spaces should be determined to make it acceptable to as many listeners as possible, while simultaneously maintaining maximum intelligibility and considering the variation in the hearing levels of listeners. In the present study, the universally acceptable range of speech level in reverberant and quiet sound fields for both young listeners with normal hearing and aged listeners with hearing loss due to aging was investigated. Word intelligibility scores and listening difficulty ratings as a function of speech level were obtained by listening tests. The results of the listening tests clarified that (1) the universally acceptable ranges of speech level are from 60 to 70 dBA, from 56 to 61 dBA, from 52 to 67 dBA and from 58 to 63 dBA for the test sound fields with the reverberation times of 0.0, 0.5, 1.0 and 2.0 s, respectively, and (2) there is a speech level that falls within all of the universally acceptable ranges of speech level obtained in the present study; that speech level is around 60 dBA.  相似文献   

9.
Intelligibility tests were performed by teachers and pupils in classrooms under a variety of (road traffic) noise conditions. The intelligibility scores are found to deteriorate at (indoor) noise levels exceeding a critical value of — 15 dB with regard to a teacher's long-term (reverberant) speech level. The implications for external noise levels are discussed: typically, an external noise level of 50 dB(A) would imply that the critical indoor level is exceeded for about 20 per cent of teachers.  相似文献   

10.
Speech intelligibility studies in classrooms   总被引:2,自引:0,他引:2  
Speech intelligibility tests and acoustical measurements were made in ten occupied classrooms. Octave-band measurements of background noise levels, early decay times, and reverberation times, as well as various early/late sound ratios, and the center time were obtained. Various octave-band useful/detrimental ratios were calculated along with the speech transmission index. The interrelationships of these measures were considered to evaluate which were most appropriate in classrooms, and the best predictors of speech intelligibility scores were identified. From these results ideal design goals for acoustical conditions for classrooms were determined either in terms of the 50-ms useful/detrimental ratios or from combinations of the reverberation time and background noise level.  相似文献   

11.
Objective measures were investigated as predictors of the speech security of closed offices and rooms. A new signal-to-noise type measure is shown to be a superior indicator for security than existing measures such as the Articulation Index, the Speech Intelligibility Index, the ratio of the loudness of speech to that of noise, and the A-weighted level difference of speech and noise. This new measure is a weighted sum of clipped one-third-octave-band signal-to-noise ratios; various weightings and clipping levels are explored. Listening tests had 19 subjects rate the audibility and intelligibility of 500 English sentences, filtered to simulate transmission through various wall constructions, and presented along with background noise. The results of the tests indicate that the new measure is highly correlated with sentence intelligibility scores and also with three security thresholds: the threshold of intelligibility (below which speech is unintelligible), the threshold of cadence (below which the cadence of speech is inaudible), and the threshold of audibility (below which speech is inaudible). The ratio of the loudness of speech to that of noise, and simple A-weighted level differences are both shown to be well correlated with these latter two thresholds (cadence and audibility), but not well correlated with intelligibility.  相似文献   

12.
Reverberation interferes with the ability to understand speech in rooms. Overlap-masking explains this degradation by assuming reverberant phonemes endure in time and mask subsequent reverberant phonemes. Most listeners benefit from binaural listening when reverberation exists, indicating that the listener's binaural system processes the two channels to reduce the reverberation. This paper investigates the hypothesis that the binaural word intelligibility advantage found in reverberation is a result of binaural overlap-masking release with the reverberation acting as masking noise. The tests utilize phonetically balanced word lists (ANSI-S3.2 1989), that are presented diotically and binaurally with recorded reverberation and reverberation-like noise. A small room, 62 m3, reverberates the words. These are recorded using two microphones without additional noise sources. The reverberation-like noise is a modified form of these recordings and has a similar spectral content. It does not contain binaural localization cues due to a phase randomization procedure. Listening to the reverberant words binaurally improves the intelligibility by 6.0% over diotic listening. The binaural intelligibility advantage for reverberation-like noise is only 2.6%. This indicates that binaural overlap-masking release is insufficient to explain the entire binaural word intelligibility advantage in reverberation.  相似文献   

13.
This paper examines the impact of room acoustic conditions on the speech intelligibility of four languages (English, Polish, Arabic and Mandarin). Listening test scores (diagnostic rhyme tests, phonemically balanced word tests and phonemically balanced sentence tests) of the four languages were compared under four room acoustic conditions defined by their speech transmission index (STI = 0.2, 0.4, 0.6 and 0.8). The results obtained indicated that there was a statistically significant difference between the word intelligibility scores of languages under all room acoustic conditions, apart from the STI = 0.8 condition. English was the most intelligible language under all conditions, and differences with other languages were larger when conditions were poor (maximum difference of 29% at STI = 0.2, 33% at STI = 0.4 and 14% at STI = 0.6). Results also showed that Arabic and Polish were particularly sensitive to background noise, and that Mandarin was significantly more intelligible than those languages at STI = 0.4. Consonant-to-vowel ratios and languages’ distinctive features and acoustical properties explained some of the scores obtained. Sentence intelligibility scores confirmed variations between languages, but these variations were statistically significant only at the STI = 0.4 condition (sentence tests being less sensitive to very good and very poor room acoustic conditions). Overall, the results indicate that large variations between the speech intelligibility of different languages can occur, especially for spaces that are expected to be challenging in terms of room acoustic conditions. Recommendations solely based on room acoustic parameters (e.g. STI) might then prove to be insufficient for designing a multilingual environment.  相似文献   

14.
This paper reports the results of a large scale, detailed acoustic survey of 42 open plan classrooms of varying design in the UK each of which contained between 2 and 14 teaching areas or classbases. The objective survey procedure, which was designed specifically for use in open plan classrooms, is described. The acoustic measurements relating to speech intelligibility within a classbase, including ambient noise level, intrusive noise level, speech to noise ratio, speech transmission index, and reverberation time, are presented. The effects on speech intelligibility of critical physical design variables, such as the number of classbases within an open plan unit and the selection of acoustic finishes for control of reverberation, are examined. This analysis enables limitations of open plan classrooms to be discussed and acoustic design guidelines to be developed to ensure good listening conditions. The types of teaching activity to provide adequate acoustic conditions, plus the speech intelligibility requirements of younger children, are also discussed.  相似文献   

15.
The previous work [Morimoto et al., J. Acoust. Soc. Am. 116, 1607-1613] showed that listening difficulty ratings can be used to evaluate speech transmission performance more exactly and sensitively than intelligibility. Meanwhile, speech transmission performance is usually evaluated using acoustical objective measures, which are directly associated with physical parameters of room acoustic design. However, the relationship between listening difficulty ratings and acoustical objective measures was not minutely investigated. In the present study, a total of 96 impulse responses were used to investigate the relationship between listening difficulty ratings and several objective measures in unidirectional sound fields. The result of the listening test showed that (1) the correlation between listening difficulty ratings and speech transmission index (STI) is the strongest of all tested objective measures, and (2) A-weighted D(50), C(50), and center time, which are obtained from the impulse responses passed through an A-weighted filter, also strongly correlate with listening difficulty ratings, and their correlations with listening difficulty ratings are not statistically different from the correlation between listening difficulty ratings and STI.  相似文献   

16.
The perceived negative influence of standard hearing protectors on communication is a common argument for not wearing them. Thus, "augmented" protectors have been developed to improve speech intelligibility. Nevertheless, their actual benefit remains a point of concern. In this paper, speech perception with active earplugs is compared to standard passive custom-made earplugs. The two types of active protectors included amplify the incoming sound with a fixed level or to a user selected fraction of the maximum safe level. For the latter type, minimal and maximal amplification are selected. To compare speech intelligibility, 20 different speech-in-noise fragments are presented to 60 normal-hearing subjects and speech recognition is scored. The background noise is selected from realistic industrial noise samples with different intensity, frequency, and temporal characteristics. Statistical analyses suggest that the protectors' performance strongly depends on the noise condition. The active protectors with minimal amplification outclass the others for the most difficult and the easiest situations, but they also limit binaural listening. In other conditions, the passive protectors clearly surpass their active counterparts. Subsequently, test fragments are analyzed acoustically to clarify the results. This provides useful information for developing prototypes, but also indicates that tests with human subjects remain essential.  相似文献   

17.
Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.  相似文献   

18.
Conversations must be shielded from people in an adjacent room if they include confidential information. Word intelligibility tests were performed in a total of 185 sound fields to examine the relationship between sound insulation performance and the degree of conversation leakage. The parameters of the test sound fields were background noise level in the adjacent room and the level difference between the two rooms. The background noise level was varied from 30 to 50 dB (A-weighted). The level difference was parametrically varied in terms of eight frequency characteristics and 10 absolute values. The results showed that word intelligibility scores were strongly correlated with the A-weighted speech-to-noise ratio and SNRuni32. Equal-intelligibility contours, which can easily show the weighted level difference and A-weighted background noise level required to achieve a certain level of word intelligibility scores, were obtained from a multiple logistic regression analysis.  相似文献   

19.
This study investigated the effects of age and hearing loss on perception of accented speech presented in quiet and noise. The relative importance of alterations in phonetic segments vs. temporal patterns in a carrier phrase with accented speech also was examined. English sentences recorded by a native English speaker and a native Spanish speaker, together with hybrid sentences that varied the native language of the speaker of the carrier phrase and the final target word of the sentence were presented to younger and older listeners with normal hearing and older listeners with hearing loss in quiet and noise. Effects of age and hearing loss were observed in both listening environments, but varied with speaker accent. All groups exhibited lower recognition performance for the final target word spoken by the accented speaker compared to that spoken by the native speaker, indicating that alterations in segmental cues due to accent play a prominent role in intelligibility. Effects of the carrier phrase were minimal. The findings indicate that recognition of accented speech, especially in noise, is a particularly challenging communication task for older people.  相似文献   

20.
Recent studies show that introducing sound from water features in urban open spaces may reduce the loudness of road traffic noise, but it is not clear in which situations this measure also improves overall soundscape quality. This work describes a listening experiment on loudness, pleasantness, and eventfulness of stimuli that combine road traffic noise with fountain or bird sound at different sound levels. Adding fountain sound reduced the loudness of road traffic noise only if the latter had low temporal variability. Conversely, adding bird sound significantly enhanced soundscape pleasantness and eventfulness, more than what was achieved by adding fountain sound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号