首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Two new gapless quantum spin-liquid candidates with S = 1 (Ni(2+)) moments: the 6H-B phase of Ba(3)NiSb(2)O(9) with a Ni(2+)-triangular lattice and the 3C phase with a Ni(2/3)Sb(1/3)-three-dimensional edge-shared tetrahedral lattice were obtained under high pressure. Both compounds show no magnetic order down to 0.35 K despite Curie-Weiss temperatures θ(CW) of -75.5 (6H-B) and -182.5 K (3C), respectively. Below ~25 K, the magnetic susceptibility of the 6H-B phase saturates to a constant value χ(0) = 0.013 emu/mol, which is followed below 7 K by a linear-temperature-dependent magnetic specific heat (C(M)) displaying a giant coefficient γ = 168 mJ/mol K(2). Both observations suggest the development of a Fermi-liquid-like ground state. For the 3C phase, the C(M) perpendicular T(2) behavior indicates a unique S = 1, 3D quantum spin-liquid ground state.  相似文献   

3.
The synthesis and characterization of Ba3CuSb2O9, which has a layered array of Cu2+ spins in a triangular lattice, are reported. The magnetic susceptibility and neutron scattering experiments of this material show no magnetic ordering down to 0.2 K with a θ(CW) = -55 K. The magnetic specific heat reveals a T-linear dependence with a γ = 43.4 mJ K(-2) mol(-1) below 1.4 K. These observations suggest that Ba3CuSb2O9 is a new quantum spin liquid candidate with a S = 1/2 triangular lattice.  相似文献   

4.
The ground state phase diagram of a general isotropic spin-3/2 system with nearest-neighbor exchange is shown to contain unconventionally ordered spin nematic and antinematic states, as well as usual ferro- and antiferromagnetic phases. The two nematic phases have spontaneously broken rotational symmetry characterized by the long-range order of the nematic director u, as well as the broken time-reversal symmetry described by the pseudospin vector σ. Nematic phase differs from antinematic one by the type of ordering in σ vectors (uniform versus staggered). The ferromagnet-nematic and antiferromagnet-antinematic phase boundaries exhibit enhanced Sp(4) symmetry and correspond to the recently studied effective theory for spin-3/2 cold gases. We discuss optical properties and topological defects in the nematic phases.  相似文献   

5.
We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with antiferromagnetic interactions in an optical lattice, including a usual polar condensate phase, a condensate of singlet pairs, a crystal spin nematic phase, and a spin singlet crystal phase. We suggest a possibility of exotic fractionalized phases of spinor Bose-Einstein condensates and discuss them in the language of Z2 lattice gauge theory.  相似文献   

6.
We consider simple modifications of the conventional Wilson action for lattice gauge theory. An SU(2) action is defined on “plaquettes” of 2×1 links. It is found to possess phase transitions in three- and four-dimensional realisations of the model. A similar model with gauge group Z(2) is also studied, and found to have two phases in three and four dimensions. We discuss the phase structure of Z(N) gauge models in four dimensions with several coupling constants and present phase diagrams for Z(4), Z(5) and Z(6).  相似文献   

7.
We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on triangular and honeycomb lattices at half filling. The organic compound kappa-(BEDT-TTF)2Cu2(CN)3 is a good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature dependence for the thermal conductivity of this material.  相似文献   

8.
Recent experiments on the "hyperkagome" lattice system Na4Ir3O8 have demonstrated that it is a rare example of a three-dimensional spin-1/2 frustrated antiferromagnet. We investigate the role of quantum fluctuations as the primary mechanism lifting the macroscopic degeneracy inherited by classical spins on this lattice. In the semiclassical limit we predict, based on large-N calculations, that an unusual q[over -->]=0 coplanar magnetically ordered ground state is stabilized with no local zero modes that correspond to local deformations of the spin configurations. This phase melts in the quantum limit and a gapped topological Z2 spin liquid phase emerges. In the vicinity of this quantum phase transition, we study the dynamic spin structure factor and comment on the relevance of our results for future neutron scattering experiments.  相似文献   

9.
The EtMe(3)P and EtMe(3)Sb triangular organic salts are distinguished from other Pd[(dmit)(2)] based salts, as they display valence bond and no long-range order, respectively. Under pressure, a superconducting phase is revealed in EtMe(3)P near the boundary of valence bond order. We use slave-rotor theory with an enlarged unit cell to study competition between uniform and broken translational symmetry states, offering a theoretical framework capturing the superconducting, valence bond order, spin liquid, and metallic phases on an isotropic triangular lattice. Our finite temperature phase diagram manifests a remarkable resemblance to the phase diagram of the EtMe(3)P salt, where the reentrant transition of insulator-metal-insulator type can be explained by an entropy difference between the metal and U(1) spin liquid. We predict different temperature dependence of the specific heat between the spin liquid and metal.  相似文献   

10.
A spinel related oxide, Na(4)Ir(3)O(8), was found to have a three dimensional network of corner shared Ir(4+) (t(2g)(5)) triangles. This gives rise to an antiferromagnetically coupled S = 1/2 spin system formed on a geometrically frustrated hyperkagome lattice. Magnetization M and magnetic specific heat C(m) data showed the absence of long range magnetic ordering at least down to 2 K. The large C(m) at low temperatures is independent of applied magnetic field up to 12 T, in striking parallel to the behavior seen in triangular and kagome antiferromagnets reported to have a spin-liquid ground state. These results strongly suggest that the ground state of Na(4)Ir(3)O(8) is a three dimensional manifestation of a spin liquid.  相似文献   

11.
量子自旋液体是一种新奇的磁性物态。由于极强的量子涨落,直至零温都不会出现长程序。量子自旋液体的基态不能用序参量描述,并且缺少对称性破缺,因此该物态的实现打破朗道理论的范式。对于量子自旋液体的研究有助于理解高温超导的机理,并且可以被应用在量子计算和量子信息中。目前,尽管理论上有了长足的发展,但仍旧没有任何一个材料被证实为量子自旋液体。因此,探测和确认一个真正的量子自旋液体材料是当前的研究重点。缪子自旋弛豫是一个对磁场极为敏感的实验技术,被广泛应用于量子自旋液体候选材料的研究中。该技术可以观测基态中是否存在磁有序,测量系统中的涨落频率,这两点都是表征量子自旋液体的重要性质。本文简要介绍了量子自旋液体态和缪子自旋弛豫技术,回顾了近期在不同体系的量子自旋液体候选材料中的实验结果,特别是缪子自旋弛豫的成果。这些体系包括一维反铁磁海森堡链(苯甲酸铜),三角格子(YbMgGaO4,NaYbO2 和TbInO3),笼目格[ZnCu3(OH)6Cl2 和 m3Sb3Zn2O14],蜂窝状格子(Na2IrO3 和 α-RuCl3),以及烧绿石结构(Tb2Ti2O7,Pr2Ir2O7 和Ce2Zr2O7)。  相似文献   

12.
The relationship between charge and spin degrees of freedom in a geometrically frustrated system, AlV2-xCrxO4 spinel, is investigated. Upon Cr doping, the charge-ordered phase of AlV2O4 is rapidly suppressed and a charge-disordered phase grows up instead. It is found that the magnetic ground state is a spin-glass state dominated by geometrical frustration for both phases, but larger spin entropy remains down to low temperatures in the charge-ordered phase, possibly owing to its two-dimensional character.  相似文献   

13.
杨圆  陈帅  李小兵 《物理学报》2018,67(23):237101-237101
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.  相似文献   

14.
We find all the exact eigenstates and eigenvalues of a spin-1/2 model on square lattice: H=16g Sum S(y)(i)S(x)(i + empty set x)S(y)(i + empty set x + empty set y)S(x)(i + empty set y). We show that the ground states for g < 0 and g > 0 have different quantum orders described by Z2A and Z2B projective symmetry groups. The phase transition at g = 0 represents a new kind of phase transition that changes quantum orders but not symmetry. Both the Z2A and Z2B states contain Z2 lattice gauge theories at low energies. They have robust topologically degenerate ground states and gapless edge excitations.  相似文献   

15.
Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8).  相似文献   

16.
In spatial dimensions d>or=2, Kondo lattice models of conduction and local moment electrons can exhibit a fractionalized, nonmagnetic state (FL(*)) with a Fermi surface of sharp electronlike quasiparticles, enclosing a volume quantized by (rho(a)-1)(mod 2), with rho(a) the mean number of all electrons per unit cell of the ground state. Such states have fractionalized excitations linked to the deconfined phase of a gauge theory. Confinement leads to a conventional Fermi liquid state, with a Fermi volume quantized by rho(a)(mod 2), and an intermediate superconducting state for the Z2 gauge case. The FL(*) state permits a second order metamagnetic transition in an applied magnetic field.  相似文献   

17.
18.
We introduce quantum dimer models on lattices made of corner-sharing triangles. These lattices include the kagome lattice and can be defined in arbitrary geometry. They realize fully disordered and gapped dimer-liquid phase with topological degeneracy and deconfined fractional excitations, as well as solid phases. Using geometrical properties of the lattice, several results are obtained exactly, including the full spectrum of a dimer liquid. These models offer a very natural-and maybe the simplest possible-framework to illustrate general concepts such as fractionalization, topological order, and relation to Z2 gauge theories.  相似文献   

19.
The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.  相似文献   

20.
Two topics of lattice gauge theory are reviewed. They include string tension and β-function calculations by strong coupling Hamiltonian methods for SU(3) gauge fields in 3 + 1 dimensions, and a 1/N-expansion for discrete gauge and spin systems in all dimensions. The SU(3) calculations give solid evidence for the coexistence of quark confinement and asymptotic freedom in the renormalized continuum limit of the lattice theory. The crossover between weak and strong coupling behavior in the theory is seen to be a weak coupling but non-perturbative effect. Quantitative relationships between perturbative and non-perturbative renormalization schemes are obtained for the O(N) nonlinear sigma models in 1 + 1 dimensions as well as the range theory in 3 + 1 dimensions. Analysis of the strong coupling expansion of the β-function for gauge fields suggests that it has cuts in the complex 1/g2-plane. A toy model of such a cut structure which naturally explains the abruptness of the theory's crossover from weak to strong coupling is presented. The relation of these cuts to other approaches to gauge field dynamics is discussed briefly.The dynamics underlying first order phase transitions in a wide class of lattice gauge theories is exposed by considering a class of models-P(N) gauge theories - which are soluble in the N → ∞ limit and have non-trivial phase diagrams. The first order character of the phase transitions in Potts spin systems for N #62; 4 in 1 + 1 dimensions is explained in simple terms which generalizes to P(N) gauge systems in higher dimensions. The phase diagram of Ising lattice gauge theory coupled to matter fields is obtained in a 1N expansion. A one-plaquette model (1 time-0 space dimensions) with a first-order phase transitions in the N → ∞ limit is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号