首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We explain the origin of the Kondo mirage seen in recent quantum corral scanning tunneling microscope experiments with a scattering theory of electrons on the surfaces of metals. Our theory, combined with experimental data, provides a direct observation of a single Kondo atom phase shift. The Kondo mirage observed at the empty focus of an elliptical quantum corral is shown to arise from multiple electron bounces off the corral wall adatoms. We demonstrate our theory with direct quantitive comparison to experimental data.  相似文献   

2.
Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.  相似文献   

3.
We consider a magnetic impurity coupled to both fermionic quasiparticles with a pseudogap density of states and bosonic spin fluctuations. Using renormalization group and large-N calculations we investigate the phase diagram of the resulting Fermi-Bose Kondo model. We show that the Kondo temperature is strongly reduced by low-energy spin fluctuations, and make connections to experiments in cuprate superconductors. Furthermore, we derive an exact exponent for the critical behavior of the conduction electron T matrix, and propose our findings to be relevant for certain scenarios of local quantum criticality in heavy-fermion metals.  相似文献   

4.
We report the first numerical identification of a locally quantum critical point at which the criticality of the local Kondo physics is embedded in that associated with a magnetic ordering. We are able to numerically access the quantum critical behavior by focusing on a Kondo-lattice model with Ising anisotropy. We also establish that the critical exponent for the q-dependent dynamical spin susceptibility is fractional and compares well with the experimental value for heavy fermions.  相似文献   

5.
We show that a junction of three off-critical quantum Ising chains can be regarded as a quantum spin chain realization of the two-channel spin-1/2 overscreened Kondo effect with two superconducting leads. We prove that, as long as the Kondo temperature is larger than the superconducting gap, the equivalent Kondo model flows towards the two channel Kondo fixed point. We argue that our system provides the first controlled realization of two channel Kondo effect with superconducting leads. Besides its theoretical interest, this result is of importance for potential applications to a number of contexts, including the analysis of the quantum entanglement properties of a Kondo system.  相似文献   

6.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

7.
We report Kondo-like behavior in a quantum antidot (a submicron depleted region in a two-dimensional electron gas) in the quantum-Hall regime. When both spins of the lowest Landau level are present all around the antidot, the resonances between extended edge states via antidot bound states show an abnormal feature in alternate Coulomb-blockaded regions. The feature becomes suppressed when the temperature or source-drain bias is raised as for Kondo resonances in quantum dots. Although the exact mechanism is unknown, Kondo-like correlated tunneling may arise from a Skyrmion-type edge reconstruction. This observation demonstrates the generality of the Kondo phenomenon.  相似文献   

8.
We address the quantum transition of a spin-1/2 antiferromagnetic Kondo lattice model with an easy-axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by using the bosonic numerical renormalization group (BNRG) method and compare them with quantum Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is consistent with being second order. The BNRG results also display some subtle features; we identify their origin and suggest means for further microscopic studies.  相似文献   

9.
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where the Kondo temperature scales as TK∝|J-Jc|1/3 near the critical coupling Jc, and the local spin is effectively screened by a super-Ohmic bath. For this class, the RKKY interaction decays spatially with a fast power law ~1/R7. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.  相似文献   

10.
11.
We theoretically investigate a device consisting of two quantum dots(QDs) side-coupled to a quantum wire which has many physicalingredients of an artificial heavy fermion system. An extra parameter, the distance L between the two QDs, is introduced and it plays an important role on the competition of the Kondo temperature and magnetic coupling. Three different phases are found: antiferromagnetic phase, Kondo phase with spin S=1/2, and Kondo phase with S=1, depending on the distance L, the magnetic coupling, and the Kondo temperature. Quantum transport properties are qualitatively different for different phases: for the S=1 Kondo and the antiferromagnetic phases, the conductance tends to the unitary value 2e2/h; for the S=1/2 Kondo phase the conductance is strongly dependent on the distance.  相似文献   

12.
Interest in the heavy fermion metals has motivated us to examine the quantum phases and their Fermi surfaces within the Kondo lattice model. We demonstrate that the model is soluble asymptotically exactly in any dimension d>1, when the Kondo coupling is small compared with the RKKY interaction and in the presence of antiferromagnetic ordering. We show that the Kondo coupling is exactly marginal in the renormalization group sense, establishing the stability of an ordered phase with a small Fermi surface AFS. Our results have implications for the global phase diagram of the heavy fermion metals, suggesting a Lifshitz transition inside the antiferromagnetic region and providing a new perspective for a Kondo-destroying antiferromagnetic quantum critical point.  相似文献   

13.
Scaling laws and universality play an important role in our understanding of critical phenomena and the Kondo effect. We present measurements of nonequilibrium transport through a single-channel Kondo quantum dot at low temperature and bias. We find that the low-energy Kondo conductance is consistent with universality between temperature and bias and is characterized by a quadratic scaling exponent, as expected for the spin-1/2 Kondo effect. We show that the nonequilibrium Kondo transport measurements are well described by a universal scaling function with two scaling parameters.  相似文献   

14.
Quantum spin tunneling and Kondo effect are two very different quantum phenomena that produce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and allows to probe the crossover from one regime to the other. We model this crossover, and the resulting changes in transport, using a non-perturbative treatment of a generalized Anderson model including magnetic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer spins can feature a split-Kondo peak driven by quantum spin tunneling.  相似文献   

15.
Kangqiao Cheng 《中国物理 B》2022,31(6):67104-067104
Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue. We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo$_2$Ga$_8$ by electric transport and AC heat capacity measurements. CeCo$_2$Ga$_8$ is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point. Upon compressing the ${c}$ axis, parallel to the Ce-Ce chain, the onset of coherent Kondo effect is enhanced. In contrast, the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along ${a}$ or ${b}$ axis. These results suggest that a tensile intra-chain strain ($\varepsilon_c >0$) pushes CeCo$_2$Ga$_8$ closer to the quantum critical point, while a compressive intra-chain strain ($\varepsilon_c<0$) likely causes departure. Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress, and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.  相似文献   

16.
王瑞强  蒋开明 《中国物理 B》2009,18(12):5443-5450
The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron--phonon coupling strength.  相似文献   

17.
Meng Lyu 《中国物理 B》2021,30(8):87101-087101
Needle-like single crystals of CeAu2In4 have been grown from In flux and characterized as a new candidate of quasi-one-dimensional Kondo lattice compound by crystallographic, magnetic, transport, and specific-heat measurements down to very low temperatures. We observe an antiferromagnetic transition at TN ≈ 0.9 K, a highly non-mean-field profile of the corresponding peak in specific heat, and a large Sommerfeld coefficient γ =369 mJ·mol-1·K-2. The Kondo temperature TK is estimated to be 1.1 K, being low and comparable to TN. While Fermi liquid behavior is observed deep into the magnetically ordered phase, the Kadowaki-Woods ratio is much reduced relative to the expected value for Ce compounds with Kramers doublet ground state. Markedly, this feature shares striking similarities to that of the prototypical quasi-one-dimensional compounds YbNi4P2 and CeRh6Ge4 with tunable ferromagnetic quantum critical point. Given the shortest Ce-Ce distance along the needle direction, CeAu2In4 appears to be an interesting model system for exploring antiferromagnetic quantum critical behaviors in a quasi-one-dimensional Kondo lattice with enhanced quantum fluctuations.  相似文献   

18.
Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.  相似文献   

19.
We study the Kondo screening of a single magnetic impurity inside a nonmagnetic quantum corral located on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are spatial variations of the Kondo temperature T K. Moreover, we predict that the Kondo screening is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns. Our results open new possibilities to manipulate and explore the Kondo effect by using quantum corrals.  相似文献   

20.
We show within the slave-boson technique that the Anderson lattice model exhibits a Kondo breakdown quantum critical point where the hybridization goes to zero at zero temperature. At this fixed point, the f electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multiscale quantum critical point in the Anderson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号