首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.

Complex formation equilibria involving pyridine-2-carboxaldehyde oxime (1), 1-(2-pyridinyl)ethanone oxime (2) and 6-methylpyridine-2-carboxaldehyde oxime (3), HL, with zinc(II) and cadmium(II) ions were studied in aqueous 0.1 M NaCl solution at 25° C by potentiometric titrations with a glass electrode. Experimental data were analysed with the least-squares computer program SUPERQUAD to determine the complexes formed and their stability constants. With Ligands 1 and 2 the sets of complexes for Zn(II) and Cd(II) are essentially the same, mono- and dinuclear oxime complexes and their deprotonated/hydrolysed products HpMq(HL)2q+p r. Owing to the steric requirements of the 6-methyl group, sets of complexes formed with 3 are distinctly different. For zinc(II), only dinuclear oximato species HpZn2(HL)4q+p 2 ( p = ? 2, ? 3, ? 4) are found, while for the larger cadmium(II) ion mononuclear oximato species CdL+ and CdL2 are detected in addition to the dinuclear complex HpCd2(HL)4q+p 2 ( p = ? 3).  相似文献   

2.
Complexes of naturally occurring hydroxynaphtho-quinone, lapachol (2-hydroxy-3(3-methyl-2-buthenyl)-1,4-naphthoquinone = HL) with Co(II), Ni(II) and Cu(II) have been prepared by reaction of the corresponding acetates with the ligand (HL) in ethanol. The molecular and crystal structures were determined for [CoL2(EtOH)2] (1), [NiL2(EtOH)2] (2), and [CuL2(py)2] (3). In all cases the deprotonated lapachol behaves as chelating bidentate ligand. The complexes were also characterized by elemental analyses, cyclic voltammetry, and FAB-MS.  相似文献   

3.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

4.
Seven Zn(II) and Cd(II) complexes of ON donor acetone-N(4)-phenylsemicarbazone (HL) have been synthesized and physico-chemically characterized by partial elemental analyses, molar conductance measurements, infrared, electronic and 1H NMR spectral studies. The semicarbazone binds the metal as a neutral bidentate ligand in all the complexes. The crystal structures of acetone-N(4)-phenylsemicarbazone and [Cd(HL)2Cl2] have been determined by X-ray diffraction studies. The coordination geometry around cadmium(II) in the complex [Cd(HL)2Cl2] is distorted octahedral.  相似文献   

5.
Eight novel Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’‐substituted terpyridine were synthesized and characterized by elemental analysis, UV, IR, NMR, electron paramagnetic resonance, high‐resolution mass spectrometry and molar conductivity measurements. The cytotoxicity of these complexes against HL‐60, BGC‐823, KB and Bel‐7402 cell lines was evaluated by MTT assay. All the complexes displayed cytotoxicity with low IC50 values (<20 μm ) and showed selectivity. Complexes 3 , 5 , 7 and 8 exerted 9‐, 5‐, 12‐ and 7‐fold higher cytotoxicity than cisplatin against Bel‐7402 cell line. The cytotoxicity of complexes 3 , 5 , 6 , 7 and 8 was higher than that of cisplatin against BGC‐823 cell line. Complexes 3 , 7 and 8 showed similar cytotoxicity to cisplatin against KB cell line. Complex 7 exhibited higher cytotoxicity than cisplatin against HL‐60 cell line. Among these complexes, complex 7 demonstrated the highest in vitro cytotoxicity, with IC50 values of 1.62, 3.59, 2.28 and 0.63 μm against HL‐60, BGC‐823, Bel‐7402 and KB cells lines, respectively. The results suggest that the cytotoxicity of these complexes is related to the nature of the terminal group of the ligand, the metal center and the leaving groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Metal complexes [Ni(HL1)2H2O] (1) and [Fe(HL1)2] (2), where HL1 is the tridentate Schiff base N-(2-hydroxyethyl)-5-nitrosalicylaldimine, were synthesized and characterized by spectroscopic methods. The crystal structures of 1 and 2 have been determined by single crystal diffraction at 100?K. Complexes 1 and 2 have a distorted octahedral geometry. The ligand and metal complexes were screened for antibacterial and antifungal activities by the disk diffusion, microdilution broth, and single spore culture techniques. Antimicrobial activities of the ligand and its complexes have been tested against 10 bacteria, two yeast, and five filamentous fungi. The ligand and metal complexes were found to be active against all tested micro-organisms.  相似文献   

7.
Schiff-base complexes of cobalt(II), nickel(II), copper(II) and, zinc(II) with 3-ethoxysalicyliden-p-aminoacetophenoneoxime (HL) were prepared and characterized on the basis of elemental analyses, IR, 1H- and 13C-NMR, electronic spectra, magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses (TGA). A tetrahedral geometry has been assigned to the complexes.  相似文献   

8.
A unique hexanuclear zinc(II) ( 1 ) and two mononuclear copper(II) ( 2 and 3 ) complexes anchored with imino phenol ligand HL 1 and HL 2 were synthesized with good yield and purity (where HL 1  = 4‐tert‐butyl‐2,6‐bis((mesitylimino)methylphenol and HL 2   =  5‐tert‐butyl‐2‐hydroxy‐3‐((mesitylimino)methyl)benzaldehyde). These complexes were characterized by utilizing various spectroscopic protocols like NMR, FTIR, UV as well as ESI‐Mass spectrometry, elemental analysis and single crystal X‐ray diffraction studies. Their potential to bind calf thymus DNA (CT‐DNA) was tested utilizing different techniques such as UV–visible and fluorescence spectroscopy. The experiment implies that they interact with CT‐DNA via non‐intercalative mode with moderate capabilities (Kb ~ 104 M?1). On the other hand, these complexes have high capabilities to quench the fluorescence of bovine serum albumin (BSA) following the static pathway. In addition, they are active catalysts for the oxidation reaction of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to 3,5‐di‐tert‐butylquinone (3,5‐DTBQ) under aerobic condition. From the recorded EPR signals of all complexes, it has been concluded that the oxidation reaction proceeds via ligand oriented radical pathway instead of metal based redox participation. Kinetic studies using 1 – 3 indicate that it follows Michaelis–Menten type of equation with moderate to high turnover number (kcat). Apart from these aspects, complexes 1 – 3 were screened for their cytotoxic behavior towards HeLa cells (human cervical carcinoma) and found quite active with comparable IC50 values to cisplatin.  相似文献   

9.
The complexation of the non-selective β-blocker nadolol, HL, 1 with copper(II) leads to formation of mono-and dinuclear complexes depending mainly on the metal-to-ligand molar ratio. The mononuclear violet complex CuL2·2Solv, 2, was obtained in a soluble form at metal-to-ligand molar ratio Cu(II): HL ≤ 1: 10 in methanolic or slightly alkaline aqueous solutions. The dinuclear green complex Cu2L2Cl2·H2O, 3 was synthesized at Cu(II): HL ≥ 1: 2 molar ratio in methanolic solutions. The complexes were studied using spectral (UV-Vis, FT-IR, EPR), magnetochemical, thermogravimetric methods and elemental analysis. In the complexes nadolol acts as a monoanionic bidentate ligand coordinated to copper(II) through the NH-and the deprotonated OH-groups of its aminoalcohol fragment.   相似文献   

10.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

11.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

12.

In this study, 1,2-dihydroxyimino-3,7-di-aza-9,10-O-α-methyl benzal decane (LH2) was synthesized starting from 1,2-O-α-methyl benzal-4-aza-7-amino heptane (RNH2) and antichloroglyoxime. With this ligand, complexes were synthesized using Ni(II) and Cu(II) salts with a metal:ligand ratio of 1:2. However, the reaction of the ligand with salts of Zn(II) and Cd(II) gave products with metal:ligand ratio of 1:1. Structures of the ligand and its complexes are proposed based on elemental analyses, IR, 13C- and 1H-NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

13.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

14.
15.
Complexes of diacetyl salicylaldehyde oxalic acid dihydrazone, CH3COC(CH3)= NNHCOCONHN=CHC6H4(OH),(dsodh) and diacetyl salicylaldehyde malonic acid dihydrazone CH3COC(CH3)=NNHCOCH2CONHN=CHC6H4(OH), (dsmdh) of general compositions [M(L)]Cl, [M′(L)Cl], [M(L′)]Cl and [M′(L′)Cl] (where M?=?Co(II), Cu(II), Zn(II), Cd(II) and M′?=?Ni(II); HL?=?dsodh and HL′?=?dsmdh) were prepared and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and infrared spectra and X-ray diffraction data. The magnetic moments and electronic spectra indicate six-coordinate octahedral geometry for Co(II) and square planar geometry for Ni(II) complexes. The ESR spectral data of Cu(II) complexes in DMF solution reveal a tetragonally distorted octahedral geometry. Both ligands bond through >C=O, >C=N and deprotonated phenolate groups in all octahedral complexes and through >C=N and deprotonated phenolate groups in Ni(II) square planar complexes. The lattice parameters for Cu(dsodh) and Co(dsmdh) correspond to an orthorhombic and Ni(dsodh) corresponds to a tetragonal crystal lattice.

The complexes show significant antifungal activity against a number of pathogenic fungi viz. Stemphylium, Myrothecium and Alternaria. The antibacterial activity was studied against Pseudomonas fluorescence (gram ?ve) and Clostridium thermocellum (gram +ve).  相似文献   

16.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

17.

Reactions of 2-hydroxyimino-1-methylpropylidene (acetyl-) and (benzoylhydrazine) with copper(II) chloride, nitrate and acetate were studied. Three types of copper(II) complexes of general formula [Cu(H2L)Cl2], [{Cu(HL)}2][sdot]2NO3[sdot]nH2O and [{Cu(L)}2], where H2L, HL, and L refer, respectively, to the neutral, monoanionic and dianionic ONN tridentate acylhydrazoneoxime ligands, were isolated and characterized. Variable-temperature magnetic susceptibility measurements for [Cu(H2L)Cl2] suggest Curie-Weiss behavior. Both [{Cu(HL)}2][sdot]2NO3[sdot]nH2O and [{Cu(L)}2] show strong antiferromagnetic exchange coupling with ? 2J values of 898-934 and 718-757 cm?1, respectively, indication dimeric structures with oximate bridges.  相似文献   

18.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

19.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

20.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号