共查询到20条相似文献,搜索用时 0 毫秒
1.
G. Baym J.-P. Blaizot M. Holzmann F. Laloë D. Vautherin 《The European Physical Journal B - Condensed Matter and Complex Systems》2001,24(1):107-124
We study the effects of repulsive interactions on the critical density for the Bose-Einstein transition in a homogeneous dilute
gas of bosons. First, we point out that the simple mean field approximation produces no change in the critical density, or
critical temperature, and discuss the inadequacies of various contradictory results in the literature. Then, both within the
frameworks of Ursell operators and of Green's functions, we derive self-consistent equations that include correlations in
the system and predict the change of the critical density. We argue that the dominant contribution to this change can be obtained
within classical field theory and show that the lowest order correction introduced by interactions is linear in the scattering
length, a, with a positive coefficient. Finally, we calculate this coefficient within various approximations, and compare with various
recent numerical estimates.
Received 15 July 2001 相似文献
2.
A. Sinatra Y. Castin 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2000,8(3):319-332
We investigate the relative phase coherence properties and the occurrence of demixing instabilities for two mutually interacting and time evolving Bose-Einstein condensates in traps. Our treatment naturally includes the additional decoherence effect due to fluctuations in the total number of particles. Analytical results are presented for the breathe-together solution, an extension of previously known scaling solution to the case of a binary mixture of condensates. When the three coupling constants describing the elastic interactions among the atoms in the two states are close to each other, a dramatic increase of the phase coherence time is predicted. Numerical results are presented for the parameters of the recent JILA experiments. Received 23 April 1999 and Received in final form 21 September 1999 相似文献
3.
4.
J. Schneider H. Wallis 《The European Physical Journal B - Condensed Matter and Complex Systems》2000,18(3):507-512
The superfluid fraction of an atomic cloud is defined using the cloud's response to a rotation of the external potential, i.e. the moment of inertia. A fully quantum mechanical calculation of this moment is based on the dispersion of Lz instead of quasi-classical averages. In this paper we derive analytical results for the moment of inertia of a small number of non-interacting Bosons using the canonical ensemble. The required symmetrized averages are obtained via a representation of the partition function by permutation cycles. Our results are useful to discriminate purely quantum statistical effects from interaction effects in studies of superfluidity and phase transitions in finite samples. Received 30 June 2000 相似文献
5.
A. Smerzi A. Trombettoni T. Lopez-Arias C. Fort P. Maddaloni F. Minardi M. Inguscio 《The European Physical Journal B - Condensed Matter and Complex Systems》2003,31(4):457-461
We demonstrate, both from a theoretical and an experimental point of view, the possibility of realizing a weak coupling between
two Bose-Einstein condensates trapped in different Zeeman states. The weak coupling drives macroscopic quantum oscillations
between the condensate populations and the observed current-phase dynamics is described by generalized Josephson equations.
In order to highlight the superfluid nature of the oscillations, we investigate the response of a 87Rb non-condensate (thermal) gas in the same conditions, showing that the thermal oscillations damp more quickly than those
of the condensate.
Received 2 May 2002 / Received in final form 19 November 2002 Published online 6 March 2003
RID="a"
ID="a"e-mail: smerzi@sissa.it 相似文献
6.
E. Braaten A. Nieto 《The European Physical Journal B - Condensed Matter and Complex Systems》1999,11(1):143-159
Quantum corrections to the properties of a homogeneous interacting Bose gas at zero temperature can be calculated as a low-density
expansion in powers of , where is the number density and a is the S-wave scattering length. We calculate the ground state energy density to second order in . The coefficient of the correction has a logarithmic term that was calculated in 1959. We present the first calculation of the constant under the
logarithm. The constant depends not only on a, but also on an extra parameter that describes the low energy scattering of the bosons. In the case of alkali atoms, we argue that the second order quantum correction is dominated by
the logarithmic term, where the argument of the logarithm is ,and is the length scale set by the van der Waals potential.
Received 2 February 1999 相似文献
7.
A. Sinatra Y. Castin 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》1998,4(3):247-260
In the absence of losses the phase of a Bose-Einstein condensate undergoes collapses and revivals in time due to elastic atomic
interactions. As experiments necessarily involve inelastic collisions, we develop a model to describe the phase dynamics of
the condensates in presence of collisional losses. We find that a few inelastic processes are sufficient to damp the revivals of the phase. For this reason the observability of phase revivals for present experimental
conditions is limited to condensates with a few hundreds of atoms.
Received: 23 February 1998 / Revised: 21 July 1998 / Accepted: 23 July 1998 相似文献
8.
T.K. Ghosh S. Sinha 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2002,19(3):371-378
We consider quadrupole excitations of quasi-two-dimensional interacting quantum gas in an anisotropic harmonic oscillator
potential at zero temperature. Using the time-dependent variational approach, we calculate a few low-lying collective excitation
frequencies of a two-dimensional anisotropic Bose gas. Within the energy weighted sum-rule approach, we derive a general dispersion
relation of two quadrupole excitations of a two-dimensional deformed trapped quantum gas. This dispersion relation is valid
for both statistics. We show that the quadrupole excitation frequencies obtained from both methods are exactly the same. Using
this general dispersion relation, we also calculate the quadrupole frequencies of a two-dimensional unpolarized Fermi gas
in an anisotropic trap. For both cases, we obtain analytic expressions for the quadrupole frequencies and the splitting between
them for arbitrary value of trap deformation. This splitting decreases with increasing interaction strength for both statistics.
For a two-dimensional anisotropic Fermi gas, the two quadrupole frequencies and the splitting between them become independent
of the particle number within the Thomas-Fermi approach.
Received 21 September 2001 and Received in final form 9 December 2001 相似文献
9.
M.P. Singh A.L. Satheesha 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》1999,7(3):391-398
We propose a simple variational form of the wave function to describe the ground state and vortex states of a weakly interacting
Bose gas in an anisotropic trap. The proposed wave function is valid for a wide range of the particle numbers in the trap.
It also works well in the case of attractive interaction between the atoms. Further, it provides an easy and fast method to
calculate the physical quantities of interest. The results compare very well with those obtained by purely numerical techniques.
Using our wave function we have been able to verify, for the first time, the predicted behaviour of the aspect ratio.
Received 7 December 1998 and Received in final form 4 February 1999 相似文献
10.
B. Pozzi L. Salasnich A. Parola L. Reatto 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2000,11(3):367-370
We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-Pritchard potential. Such a trapping
potential, that models the magnetic trap used in recent experiments with hydrogen, is anharmonic and strongly anisotropic.
We calculate the ground-state properties, the condensed and non-condensed fraction and the Bose-Einstein transition temperature.
The thermodynamics of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the
possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam.
Received 15 February 2000 相似文献
11.
E. Mandonnet A. Minguzzi R. Dum I. Carusotto Y. Castin J. Dalibard 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2000,10(1):9-18
We present a theoretical analysis of the evaporative cooling of an atomic beam propagating in a magnetic guide. Cooling is
provided by transverse evaporation. The atomic dynamics inside the guide is analyzed by solving the Boltzmann equation with
two different approaches: an approximate analytical ansatz and a Monte-Carlo simulation. Within their domain of validity,
these two methods are found to be in very good agreement with each other. They allow us to determine how the phase-space density
and the flux of the beam vary along its direction of propagation. We find a significant increase for the phase-space density
along the guide for realistic experimental parameters. By extrapolation, we estimate the length of the beam needed to reach
quantum degeneracy.
Received 24 September 1999 相似文献
12.
L. Vichi M. Amoruso A. Minguzzi S. Stringari M.P. Tosi 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2000,11(3):335-339
We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with particular attention to the effects
of the interactions on the kinetic energy of the fermionic component. We are able to explore a wide region of system parameters
by identifying two scaling variables which completely determine its state at low temperature. These are the ratio of the boson-fermion
and boson-boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the interactions
can be sizeable for reasonable choices of the parameters and that its experimental study can be used to infer the sign of
the boson-fermion scattering length. The interplay between interactions and thermal effects in the fermionic kinetic energy
is also discussed.
Received 13 September 1999 and Received in final form 22 February 2000 相似文献
13.
Z.P. Karkuszewski K. Sacha A. Smerzi 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2002,21(3):251-254
We study a Bose-Einstein condensate trapped in an asymmetric double well potential. Solutions of the time-independent Gross-Pitaevskii
equation reveal intrinsic loops in the energy (or chemical potential) level behavior when the shape of the potential is varied.
We investigate the corresponding behavior of the quantum (many-body) energy levels. Applying the two-mode approximation to
the bosonic field operators, we show that the quantum energy levels create an anti-crossing net inside the region bounded
by the loop of the mean field solution.
Received 6 March 2002 / Received in final form 19 September 2002 Published online 15 November 2002
RID="a"
ID="a"e-mail: smerzi@cnls.lanl.gov 相似文献
14.
A. Montina E. Arimondo 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2001,14(1):105-110
In this article we introduce a differential equation for the first order correlation function G
(1) of a Bose-Einstein condensate at T = 0. The Bogoliubov approximation is used. Our approach points out directly the dependence on the physical parameters. Furthermore
it suggests a numerical method to calculate G
(1) without solving an eigenvector problem. The G
(1) equation is generalized to the case of non zero temperature.
Received 20 September 2000 相似文献
15.
M. Bortz S. Sergeev 《The European Physical Journal B - Condensed Matter and Complex Systems》2006,51(3):395-405
We investigate the exact solution of the q-deformed one-dimensional Bose gas to derive all integrals of motion and their corresponding
eigenvalues. As an application, the thermodynamics is given and compared to an effective field theory at low temperatures. 相似文献
16.
K.C. Chase A.Z. Mekjian L. Zamick 《The European Physical Journal B - Condensed Matter and Complex Systems》1999,8(2):281-285
The thermodynamic properties of bosons moving in a harmonic trap in an arbitrary number of dimensions are investigated in
the grand canonical, canonical and microcanonical ensembles by applying combinatorial techniques developed earlier in statistical
nuclear fragmentation models. Thermodynamic functions such as the energy and specific heat are computed exactly in these ensembles.
The occupation of the ground or condensed state is also obtained exactly, and signals clearly the phase transition. The application
of these techniques to fermionic systems is also briefly discussed.
Received 18 August 1998 and Received in final form 14 October 1998 相似文献
17.
M. Modugno L. Pricoupenko Y. Castin 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2003,22(2):235-257
We consider a 3D dilute Bose-Einstein condensate at thermal equilibrium in a rotating harmonic trap. The condensate wavefunction
is a local minimum of the Gross-Pitaevskii energy functional and we determine it numerically with the very efficient conjugate
gradient method. For single vortex configurations in a cigar-shaped harmonic trap we find that the vortex line is bent, in
agreement with the numerical prediction of Garcia-Ripoll and Perez-Garcia [Phys. Rev. A 63, 041603 (2001)]. We derive a simple energy functional for the vortex line in a cigar-shaped condensate which allows to understand
physically why the vortex line bends and to predict analytically the minimal rotation frequency required to stabilize the
bent vortex line. This analytical prediction is in excellent agreement with the numerical results. It also allows to find
in a simple way a saddle point of the energy, where the vortex line is in a stationary configuration in the rotating frame
but not a local minimum of energy. Finally we investigate numerically the effect of thermal fluctuations on the vortex line
for a condensate with a straight vortex: we can predict what happens in a single realization of the experiment by a Monte
Carlo sampling of an atomic field quasi-distribution function of the density operator of the gas at thermal equilibrium in
the Bogoliubov approximation.
Received 28 March 2002 / Received in final form 13 September 2002 Published online 21 January 2003
RID="a"
ID="a"e-mail: yvan.castin@lkb.ens.fr 相似文献
18.
J. Ruostekoski D.F. Walls 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》1999,5(3):335-339
Two Bose-Einstein condensates in different Zeeman sublevels can be decoupled from driving light fields in coherent population
trapping. A condensate pair with a deterministic entanglement and a controllable value of the relative phase may be prepared
by selecting the phase difference between the coherent light fields. The rate of the condensate phase diffusion may be determined
from the two-photon resonant absorption of radiation.
Received: 29 June 1998 / Revised: 10 October 1998 / Accepted: 19 October 1998 相似文献
19.
A.Yu. Cherny A.A. Shanenko 《The European Physical Journal B - Condensed Matter and Complex Systems》2001,19(4):555-564
The modified Bogoliubov model where the primordial interaction is replaced by the t matrix is reinvestigated. It is shown to provide a negative value of the kinetic energy for a strongly interacting dilute
Bose gas, contrary to the original Bogoliubov model. To clear up the origin of this failure, the correct values of the kinetic
and interaction energies of a dilute Bose gas are calculated. It is demonstrated that both the problem of the negative kinetic
energy and the ultraviolet divergence, dating back to the well-known paper of Lee, Yang and Huang, is connected with an inadequate
picture of the short-range boson correlations. These correlations are reconsidered within the thermodynamically consistent
model proposed earlier by the present authors. Found results are in absolute agreement with the data of the Monte-Carlo calculations
for the hard-sphere Bose gas.
Received 10 February 2000 and Received in final form 28 November 2000 相似文献
20.
C. Lichtenberg G. Marx G. Tommaseo P.N. Ghosh G. Werth 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》1998,2(1):29-32
On the basis of a macroscopic ground state population it was argued recently that Bose-Einstein condensation should occur
in a one-dimensional harmonic potential. We examine this situation by drawing analogies to bosons in a two-dimensional box,
where the thermodynamic limit is well-defined. We show that in both systems although the ground state populations show sharp
onsets at the critical temperature, the behaviour of the specific heat is analytic, which proves the absence of a phase transition
in these systems.
Received: 17 February 1997 / Revised: 3 September 1997 / Accepted: 13 October 1997 相似文献