首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
Interaction of adenine (A) with dichloro-[1-alkyl-2-(α-naphthylazo)imidazole] palladium(II) [Pd(α-NaiR)Cl2], 1 and dichloro-[1-alkyl-2-(β-naphthylazo)imidazole] palladium(II) [Pd(β-NaiR)Cl2], 2 {where R=Me (a), Et (b) or Bz (c)} in MeCN-water (50% v/v) medium to yield [{1-alkyl-2-(α-naphthylazo)imidazole}(adenine)]palladium(II) perchlorates (3a, 3b, 3c) and [{1-alkyl-2-(β-naphthylazo)imidazole}(adenine)]palladium(II) perchlorates (4a, 4b, 4c) was studied. The products were characterized by physico-chemical and spectroscopic methods. The reaction kinetics were second order overall, being first order in both the Pd(II) complex and adenine. The effect of adding chloride was consistent with rate-limiting dissociation of chloride from the complex. Thermodynamic parameters were determined from temperature variation experiments. The second-order rate constant k 2 corroborates with the experimental ΔH° values, while the negative values of ΔS° indicate that the reaction proceeds through an associative inner sphere mechanism.  相似文献   

2.
Picolinic acid (picH) reacts with [Pd(α-/β-NaiR)Cl2] [α-/β-NaiR = 1-alkyl-2-(naphthyl-α-/β-azo)imidazole] in acetonitrile (MeCN) medium to give [Pd(α-/β-NaiR)(pic)](ClO4). The products are characterized by spectroscopic techniques (FT-IR, UV–Vis, NMR). The reaction kinetics show first order dependence of rate on each of the concentration of Pd(II) complex and picH. Addition of LiCl to the reaction decreases the rate of reaction and has proved the cleavage of Pd–Cl bond at the rate-determining step. Thermodynamic parameters (Δ and Δ) are determined from variable temperature kinetic studies. The magnitude of the second order rate constant, k2 increases as in the order: Pd(NaiEt)Cl2 < Pd(NaiMe)Cl2 <  Pd(NaiBz)Cl2 as well as Pd(β-NaiR)Cl2 <  Pd(α-NaiR)Cl2.  相似文献   

3.
Palladium(II) complexes of thiones having the general formula [Pd(L)4]Cl2, where L = thiourea (Tu), methylthiourea (Metu), N,N′-dimethylthiourea (Dmtu), and tetramethylthiourea (Tmtu) were prepared by reacting K2[PdCl4] with the corresponding thiones. The complexes have been characterized by elemental analysis, IR and NMR spectroscopy, and two of these, [Pd(Dmtu)4]Cl2 · 2H2O (1) and [Pd(Tmtu)4]Cl2 (2), by X-ray crystallography. An upfield shift in the >C=S resonance of thiones in 13C NMR and downfield shift in N–H resonance in 1H NMR are consistent in showing sulfur coordination with palladium(II). The crystal structures of the complexes show a square-planar coordination environment around the Pd(II) ions with the average cis and trans S–Pd–S bond angles of 89.64° and 173.48°, respectively. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

4.
Summary Rhodium(I), iridium(I), palladium(II) and platinum(II) complexes of the phosphinoamide ligands, Ph2PCH2CONHR (R = H, HDPA; Me, MDPA; Ph, PDPA) were prepared and characterized by using conductivity data, i.r., 1H and 31P(H) n.m.r. spectral data. Reaction of the ligands with MCl(PPh3)3 and MCl(CO)(PPh3)2 (M = Rh, Ir) in CH2Cl2 under reflux lead to the formation of MCl(PPh3)2 [Ph2PCH2C(O)NHR] and MCl(CO)(PPh3)[Ph2PCH2–C(O)HNR] respectively. The reaction of either K2MCl4 or cis-MCl2(PPh3)2 affords complexes of the type cis-MCl2[Ph2PCH2C(O)NHR]2 (M = Pd, Pt). A similar product results even from the reaction of phosphinoamides with cis-platin. Possible structures are proposed for the complexes based on their physicochemical data  相似文献   

5.
8-Quinolinol (HQ) reacts with [Pd(α-/β-NaiR)Cl2] [α-/β-NaiR = 1-alkyl-2-(naphthyl-α-/β-azo)imidazole] in acetonitrile (MeCN) solution to give [Pd(α-/β-NaiR)(Q)](ClO4). The products are characterized by spectroscopic techniques (FT-IR, UV–Vis, NMR). The reaction kinetics show a first order dependence of rate on each of the concentration of the metal complex and HQ. Addition of LiCl to the reaction retarded the rate of reaction and has proved the cleavage of the Pd–Cl bond as the rate-determining step. Thermodynamic parameters (ΔH° and ΔS°) are determined from variable temperature kinetic studies. The magnitude of the second order rate constant, k2, increases as in the order: Pd(NaiEt)Cl2 < Pd(NaiMe)Cl2 < Pd(NaiBz)Cl2 as well as Pd(β-NaiR)Cl2 < Pd(α-NaiR)Cl2.  相似文献   

6.
New Pd(II) complexes with 1-allyl-3-(2-pyridyl)thiourea (APTU) of the formulas [Pd(C9H11N3S)Cl2] (I) and [Pd(C9H11N3S)2]Cl2 (II) were obtained and examined by UV-Vis, IR, and 1H NMR spectroscopy. The conditions for the complexation reactions were optimized. The instability constants and molar absorption coefficients of these complexes were calculated. Comparison of the characteristic bands in the UV-Vis and IR spectra of the complexes and free APTU revealed that the ligand in both complexes is coordinated to the metal atom in the thione form in the bidentate chelating mode through the S atom of the thiourea group and the pyridine N atom. In the UV-Vis spectra of the complexes, the charge transfer bands (π → π* Py) and n → π* (C=NPy), (C=S) experience hypsochromic shifts by 450–470 cm−1 caused by the coordination of APTU to the metal ion, which gives rise to ligand-metal charge-transfer bands (C=NPy → Pd, n → π* (C=S)) and (SPd). The protons in the 6-, 4-, and 3-positions of the pyridine ring and the thiourea NH proton in the chelate ring are most sensitive to the complexation.  相似文献   

7.
The palladium(II) and platin(II) 1, 1‐dicyanoethylene‐2, 2‐dithiolates [(L–L)M{S2C=C(CN)2}] (M = Pd: L–L = dppm, dppe, dcpe, dpmb; M = Pt: dppe, dcpe, dpmb) were prepared either from[(L–L)MCl2] and K2[S2C=C(CN)2] or from [(PPh3)2M{S2C=C(CN)2}] and the bisphosphane. Moreover, [(dppe)Pt{S2C=C(CN)2}]was obtained from [(1, 5‐C8H12)Pt{S2C=C(CN)2}] and dppeby ligand exchange. The 1, 1‐dicyanoethylene‐2, 2‐diselenolates[(dppe)M{Se2C=C(CN)2}] (M = Pd, Pt) were prepared from[(dppe)MCl2] and K2[Se2C=C(CN)2]. The oxidation potentials of the square‐planar palladium and platinum complexes were determined by cyclic voltammetry. The reaction of [(dcpe)Pd(S2C=O)] with TCNE led to a ligand fragment exchange and gave the 1, 1‐dicyanoethylene‐2, 2‐dithiolate [(dcpe)Pd{S2C=C(CN)2}] in good yield.  相似文献   

8.
The ternary complexes [Pd(RaaiX)(SS)ClO4) where RaaiX is a N(1)-alkyl-2-(arylazo)imidazole (p-RC6H4N =NC3H2NN(1) X; X = Me, or Et, and R = H, Me or Cl) and SS = N,N-diethyldithiocarbamate or morpholinedithiocarbamate have been prepared and characterized by elemental analysis, i.r., u.v.-vis. and 1H-n.m.r. data. Electrochemical studies show azo reduction. The complexes are thermally unstable and decompose to bis(dithiocarbamato)palladium(II) in solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
《Journal of Coordination Chemistry》2012,65(16-18):2787-2799
Abstract

Mononuclear trans-Pd(II)–NHC complexes (where NHC?=?N-heterocyclic carbene) bearing asymmetrically substituted NHC-ligand have been synthesized via transmetalation reaction between Ag(I)–NHC complexes and [Pd(NCCH3)2Cl2]. The NHC precursors are accessible in two steps by N-n-alkyl reactions of benzimidazole. The resultant benzimidazolium salts were deprotonated with Ag2O by in situ deprotonation to facilitate the formation of mononuclear Ag(I)–NHC complexes. Single-crystal structural study for Pd(II)–NHC shows that the palladium(II) ion exhibits a square-planar geometry of two NHC ligands and two chloride ions. The cytotoxicity study was investigated against breast cancer cell line (MCF-7). The Ag(I)–NHC complexes exhibit better activities than their corresponding Pd(II)–NHC complexes, whereas all benzimidazolium salts are inactive toward MCF-7 cancer cell line.  相似文献   

10.
The reaction products of Cu(II) 2-chlorobenzoate and the imidazole (1), and of Cu(II) 2,6-dichlorobenzoate and the imidazole (2) formulated as CuL’2⋅2imd⋅2H2O and CuL”2⋅2imd⋅2H2O (L’=C7H4ClO2 , L”=C7H3Cl2O2 , imd=imidazole), were prepared and characterized by means of spectroscopic measurements and thermochemical properties. The blue (1) and green (2) complexes were obtained as solids with a 1:2:2 molar ratio of metal to carboxylate ligand to imidazole. When heated at a heating rate of 10 K min−1 the hydrated complexes, (1) and (2), lose some of the crystallization water molecules and then decompose to gaseous products. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Biscyclometallated [(M(N∧N))2(μ-dphpm)](ClO4)2 and [(N∧N)Pd(μ-dphpm)Pt(N∧N)]Cl2 complexes [M = Pd(II), Pt(II); (N∧N) ethylenediamine (En), 1,10-phenanthroline (phen); dphpm2 — bisdeprotonated form of 4,6-diphenylpyrimidine)] have been characterized by the 1H NMR, electronic absorption and emission spectroscopy, and also cyclic voltammetry methods. The lowest unoccupied molecular orbital (LUMO) of biscyclometallated complexes with ethylenediamine, responsible for low-energy photo- and electro-stimulated processes irrespective of the metal nature, is assigned to the π* orbital mainly localized on the pyrimidine part of the bridging ligand. In the case of complexes with phenanthroline chelating ligands, the replacement of one or two palladium metal centers [{Pd(phen)}2(μ-dphpm)]2+ by platinum centers changes the LUMO nature of the complexes for the π* orbital mainly localized on the peripheral metal-complex fragment {Pt(phen)}.  相似文献   

12.
Reduction of palladium(II) glycinate complexes in strongly acid 0.5 M NaClO4 solutions (pH 0.6 and 1.0) with variable palladium(II) complex and free glycine concentration was studied by the taking of cyclic voltammograms at palladium rotating disc electrode. It is shown that it was a chelate monoglycinate palladium(II) complex that was present in all studied solutions and underwent the reduction. The diffusion coefficient of the chelate monoglycinate palladium(II) complex D = (6.5 ± 0.5) × 10−6 cm2/s was determined from the limiting diffusion current of the complex reduction. The monoglycinate palladium(II) complex reduction occurred in the double-layer segment of the palladium charging curve; it was not complicated by hydrogen adsorption at electrodes. The palladium(II) complex reduction half-wave potential was determined (E 1/2 = ∼0.300 to 0.330 V (SCE)). It is shown that the decreasing of the number of ligands coordinated by palladium via nitrogen atom facilitates the complex reduction process. In particular, the reduction potentials of palladium(II) complexes with different ligand number at palladium electrode shifted markedly toward negative potentials in the series: Pdgly+ < Pd(gly)2 < Pd(gly)42−.  相似文献   

13.
1H NMR spectroscopy was applied to study the reactions of palladium(II) complexes, cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ (dpa is 2,2′-dipyridylamine acting as a bidentate ligand) with the dipeptides methionylglycine (Met-Gly) and histidylglycine (His-Gly), and the N-acetylated derivatives of these dipeptides, MeCOMet-Gly and MeCOHis-Gly. All reactions were carried out in the pH range 2.0–2.5 with equimolar amounts of the palladium(II) complex and the peptide at two different temperatures, 25 and 60 °C. In the reactions of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ with Met-Gly and His-Gly, no hydrolysis of the peptide bond was observed. The final product in these reactions was the [Pd(dpa)2]2+ complex. The square-planar structure of this complex was confirmed by X-ray analysis. The reaction of the cis-[Pd(dpa)(H2O)2]2+ complex with the MeCOHis-Gly and MeCOMet-Gly peptides under the previously mentioned experimental conditions was remarkably selective in the cleavage of the amide bond involving the carboxylic group of methionine in the side chain. The modes of coordination of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ in the reactions with the non-acetylated peptides and the total steric inhibition of the hydrolytic reaction between cis-[Pd(dpa)(H2O)2]2+ and MeCOHis-Gly can be attributed to the steric bulk of the palladium(II) complex. This finding should be taken into consideration in designing new palladium(II) complexes for the regioselective cleavage of peptides and proteins.  相似文献   

14.
The B3LYP/6-31G** method was used for the study of nucleophilic substitution reaction in platinum and palladium square-planar cis-diaminate complexes. The processes under consideration take place in two steps through pentacoordinated transition states. Activation barriers for both steps of these processes in gaseous phase and aqueous solution were calculated. A major role in the increase in the activation energies is played by the formation of the intermediate electrostatic Van der Waals’ complexes. For the complex cis-[Pd(NH3)2Cl2], the activation barriers in the nucleophilic substitution reaction are considerably lower than those for the complex cis-[Pt(NH3)2Cl2].  相似文献   

15.
Two carboxamide ligands, H2bqbenzo {3,4-bis(2-quinolinecarboxamido)benzophenone} and H2bqb {N,N′-bis[(2-quinolinecarboxamide)-1,2-benzene]}, have been prepared using tetrabutylammonium bromide as an environmentally benign reaction medium. Two new Pd(II) complexes, [PdII(bqbenzo)] (1) and [PdII(bqb)] (2), have been synthesized, characterized, and their structures determined by single crystal X-ray diffraction. The di-anionic ligands, bqbenzo2? and bqb2?, are coordinated via two Namide atoms and the nitrogens of the two quinoline rings, with Pd?Namide < Pd–Nquinoline bond lengths. The geometry around palladium(II) in both complexes is distorted square planar. The electrochemical behaviors of the ligands and their Pd(II) complexes have been investigated by cyclic voltammetry in DMF. An irreversible PdII/I reduction is observed at ?1.06 V for 1 and at ?1.177 V for 2, indicating the influence of the R substituent on the central phenyl ring of carboxamide ligands on the PdII/I reduction potential. The ligands and palladium complexes were also screened for in vitro antibacterial activity. The Pd(II) complexes show strong biological activity against S.typhi and E.coli as Gram ?ve and B.cereus and S.aureus as Gram +ve bacteria comparable to the antibiotic penicillin. The antibacterial results also reveal that coordination of Pd(II) significantly improves the activity.  相似文献   

16.
The preparation of a series of ferrocenyl nitrogen donor ligands including ferrocenylpyridines, ferrocenylphenylpyridines and 1,1-di(2-pyridyl)ferrocene is described. Coordination studies of the substituted pyridines (L) were carried out with platinum, palladium, rhodium and iridium. This resulted in the preparation of the following types of complexes: [MCl(CO)2(L)] and [M(cod)(L)2]ClO4 where M=Rh or Ir, cod=1,5-cyclooctadiene; [MCl2(L)2] where M=Pt or Pd. The X-ray crystal structure of trans-dichlorobis(3-ferrocenylpyridine)palladium was obtained. The complexes were screened for activity against two human cancer cell lines. At least two of the complexes displayed growth inhibition similar to that of the widely used chemotherapeutic agent, cisplatin.  相似文献   

17.
Two new palladium(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione(mpyh) were synthesized: cis-[Pd(mpyh)2Cl2]·H2O and cis-[Pd(mpyh)2Br2]·2H2O. The molecular formulae of the complexes were confirmed by elemental analysis, IR, 1H NMR spectra and DTA study. The ligand is coordinated to the palladium ion with N-atom of the pyridine ring. The spectroscopic data indicate a square planar geometry with two N-pyridine atoms and two halogene anions in cis position. The final product of the thermal decomposition of cis-[Pd(mpyh)2Cl2]·H2O is metallic Pd, whereas for cis-[Pd(mpyh)2Br2]·2H2O the residue consists of metallic Pd and C. The cytotoxic effects of the complexes were examined in vitro on some human tumor cell lines. The cis-[Pd(mpyh)2Cl2]·H2O proved to be more active as compared to the cis-[Pd(mpyh)2Br2]·2H2O.  相似文献   

18.
Two polymeric complexes: catena(μ-CrO4-O,O′)[Co(HIm)3H2O] (1) and catena(μ-CrO4-O,O′)[Co0.43Ni0.57(HIm)3H2O] (2) (where HIm=imidazole) with a cis-bridging coordination mode of the CrO4 2− anion have been synthesized and characterized by X-ray and spectroscopic methods. These crystals were isolated from nine systems of varying reagent molar ratios and three excluding anions: Cl, NO3 and SO4 2− exclusively as mer [M(HIm)3O3]-type isomers. The unit cell of these isostructural complexes (monoclinic crystal system P21 /n) contains two independent helixes, left- and right handed, stabilized by intrahelical and interhelical hydrogen bonding and π–π interaction between pairs of the imidazole rings from neighbouring helixes. The Raman spectra at 77 K of 1 and 2 deconvoluted into lorentzian components revealed the block-type polymeric structure of the complexes. Moreover, the solution studies at millimolar concentrations of 1 and 2 indicated their complete decomposition in water. Four K electronic spectral analysis of the crystals (band deconvolution into gaussian components) enhanced with the data obtained in the polarized light allowed for assignment of the bands to the respective d–d transition (D4h symmetry). It was found that the metallic centres are independently absorbing species, which supports the suggestion of a block-type structure of the polymers. The respective crystal field parameters for Co and Ni were calculated.  相似文献   

19.
Summary New heterobimetallic complexes of nickel, palladium or platinum and the ligand cis-1,2-bis(diphenylphosphine)-ethene, dppen, and tin were prepared. The transition metal is bonded either directly or via chlorine bridges to the tin atom. The compounds were obtained from precursor complexes of the general formula [M(dppen)Cl2] (M = Ni, Pd or Pt) by reaction with Ph3SnH or SnCl2.  相似文献   

20.
S-Alkyl (R = benzyl, methyl, ethyl, propyl and butyl) derivatives of thiosalicylic acid and the corresponding palladium(II) complexes were prepared and their structures were proposed on the basis of infrared, 1H and 13C NMR spectroscopy. The cis geometrical configurations of the isolated complexes were proposed on the basis of an X-ray structural study of the bis(S-benzyl-thiosalicylate)-palladium(II), [Pd(S-bz-thiosal)2] complex.Antimicrobial activity of the tested compounds was evaluated by determining the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) in relation to 26 species of microorganisms. The tested ligands, with a few exceptions, show low antimicrobial activity. The palladium(II) complexes, [Pd(S-R-thiosal)2], have statistically significant higher activity than the corresponding ligands. The complexes [Pd(S-et-thiosal)2] and [Pd(S-pro-thiosal)2] displayed the strongest activity amongst the all tested compounds. The palladium(II) complexes show selective and moderate antibacterial activity and significant antifungal activity. The most sensitive were Aspergillus fumigatus and Aspergillus flavus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号