首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Tuneable and stable surface‐chemical gradients in supported lipid bilayers (SLBs) hold great promise for a range of applications in biological sensing and screening. Yet, until now, no method has been reported that provides temporal control of SLB gradients. Herein we report on the development of locked‐in SLB gradients that can be tuned in space, time and density by applying a process to control lipid phase behaviour, electric field and temperature. Stable gradients of charged Texas‐Red‐, serine‐ or biotin‐terminated lipids have been prepared. For example, the Texas‐Red surface density was varied from 0 to 2 mol %, while the length was varied between several tens to several hundreds of microns. At room temperature the gradients are shown to be stable up to 24 h, while at 60 °C the gradients could be erased in 30 min. Covalent and non‐covalent chemical modification of the gradients is demonstrated, for example, by FITC, hexahistidine‐tagged proteins, and SAv/biotin. The amenability to various (bio)chemistries paves the way for novel SLB‐based gradients, useful in sensing, high‐throughput screening and for understanding dynamic biological processes.  相似文献   

2.
Aqueous Diels-Alder chemistry combined with a poly(ethylene glycol) (PEG) spacer was used to immobilize a diverse group of biomolecules onto a solid surface. Briefly, α, ω linear PEG conjugates were synthesized containing cyclopentadiene in the α position and either biotin, lactose, or protein A in the ω position. Linkers were coupled to N-maleimide (EMC)-functionalized glass substrates, and surface immobilization of biomolecules was confirmed by confocal fluorescence imaging.  相似文献   

3.
Fluorescent derivatives of the 129Xe NMR contrast agent cryptophane‐A were obtained by functionalization with near infrared fluorescent dyes DY680 and DY682. The resulting conjugates were spectrally characterized, and their interaction with giant and large unilamellar vesicles of varying phospholipid composition was analyzed by fluorescence and NMR spectroscopy. In the latter, a chemical exchange saturation transfer with hyperpolarized 129Xe (Hyper‐CEST) was used to obtain sufficient sensitivity. To determine the partitioning coefficients, we developed a method based on fluorescence resonance energy transfer from Nile Red to the membrane‐bound conjugates. This indicated that not only the hydrophobicity of the conjugates, but also the phospholipid composition, largely determines the membrane incorporation. Thereby, partitioning into the liquid‐crystalline phase of 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine was most efficient. Fluorescence depth quenching and flip‐flop assays suggest a perpendicular orientation of the conjugates to the membrane surface with negligible transversal diffusion, and that the fluorescent dyes reside in the interfacial area. The results serve as a basis to differentiate biomembranes by analyzing the Hyper‐CEST signatures that are related to membrane fluidity, and pave the way for dissecting different contributions to the Hyper‐CEST signal.  相似文献   

4.
Several novel amphiphilic lipid derivatives were synthesized consisting of a lipid anchor connected to the hydrophilic moiety via a disulfide or glycoside bond and biotin linked to the hydrophilic part. Disulfide bonds were established by the help of 4-phenyltriazol-3,5-dione. Dansyl or fluorescein was covalently linked as fluorescent marker to some of the conjugates, allowing spectroscopic and microscopic detection. The conjugates represent first amphiphilic lipids carrying all four functions, i.e., lipophilic, hydrophilic, recognition, and disulfide cleavage group in one molecule, which are necessary for targeted, triggered drug delivery from phospholipid liposomes on demand.  相似文献   

5.
In search for a delivery approach for thymidine monophosphate (TMP) in bacterial cells, we have synthesized a series of conjugates of TMP with biotin having an oxymethyleneoxy ester, a carboxy ester, and different carboxamide linkers between the carboxyl group of biotin and the 3′-OH group of TMP. The synthetic strategy starts from 5′-O-(dibenzylphosphate)-thymidine having the linkers already connected at the 3′-position. Likewise, kanamycin A was linked at the 3′-position of TMP using a carbamoyl or thioethyl carbamoyl group. None of the conjugates were able to sustain growth of a ΔthyA, ΔphoA Escherichia coli strain.  相似文献   

6.
In this study, thioglycolic acid capped-CdTe quantum dots (QDs) were modified by polyethylenimine (PEI), and then combined with fluorescein isothiocyanate (FITC) to fabricate FITC–CdTe conjugates. The self-assembly of FITC, CdTe and PEI was ascribed to electrostatic interactions in aqueous solution. The resulting conjugates were developed toward two routes. In route one, ratiometric photoluminescence (PL) intensity of conjugates (IFITC/IQDs) was almost linear toward pH from 5.3 to 8.7, and a ratiometric PL sensor of pH was favorable obtained. In route two, firstly added S2− induced remarkable quenching of QDs PL peak (at the “OFF” state), which was restored due to following addition of Cd2+ (at the “ON” state). In the conjugates, successive introduction of S2− and Cd2+ hardly influenced on FITC PL peaks. According to this PL “OFF-ON” mode, a ratiometric PL method for the detection of Cd2+ was achieved. Experimental results confirmed that the IFITC/IQDs exhibited near linear proportion toward Cd2+ concentration in the range from 0.1 to 15 μM, and the limit of detection was 12 nM. Interferential experiments adequately testified that the proposed sensors of pH and Cd2+ were practicable in real samples and complex systems. In comparison with conventional analytical techniques, the ratiometric PL method was simple, rapid, economic and highly selective.  相似文献   

7.
Fluorescein, Texas Red, Cascade Blue, 7-amino-methylcoumarin-3-acetic acid, and Lucifer Yellow were evaluated as fluorescent labels for homogeneous fluorophore-linked binding assays. Conjugates of avidin with these fluorophores exhibited an enhancement in fluorescence emission in the presence of biotin or biotin derivatives. This property was used in the development of assays for biotin. The biotin-induced fluorescence enhancement of each labeled avidin were compared. Fluorescein led to the most sensitive calibration (dose-response) curve for biotin with a detection limit of 8 x 10(-10)M.  相似文献   

8.
The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N?dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.  相似文献   

9.
Membrane proteins are some of the most sophisticated molecules found in nature. These molecules have extraordinary recognition properties; hence, they represent a vast source of specialized materials with potential uses in sensing and screening applications. However, the strict requirement of the native lipid environment to preserve their structure and functionality presents an impediment in building biofunctional materials from these molecules. In general, the purification protocols remove the native lipid support structures found in the cellular environment that stabilize the membrane proteins. Furthermore, the membrane protein structure is often highly complex, typified by large, multisubunit complexes that not only span the lipid bilayer but also contain large (>2 nm) cytoplasmic and extracellular domains that protrude from the membrane. The present study is focused on using a biomimetic approach to build a stable, fluid microenvironment to be used to incorporate larger membrane proteins of interest into a tether-supported lipid bilayer membrane adequately spaced above a substrate passivated to liposome fusion and nonspecific adsorption. Our aim is to reintroduce the supporting structures of the native cell membrane using self-assembled supramolecular complexes constructed on microspheres in an artificial cytoskeleton motif. Central to our architecture is to utilize bacteriorhodopsin (bR), a transmembrane protein, as a biomembrane anchoring molecule to be tethered to surfaces of interest as a sparse structural element in the design. Compared to a typical lipid tether, which inserts into one leaflet of the lipid bilayer, bR anchoring provides an over 8-fold greater hydrophobic surface area in contact with the bilayer. In the work presented here, the silica microsphere surface was biofunctionalized with streptavidin to make it a suitable supporting interface. This was achieved by self-assembly of (p-aminophenyl)trimethoxysilane on the silica surface followed by subsequent conjugation of biotin-PEG3400 (PEG = poly(ethylene glycol) and PEG2000 for further passivation and the binding of streptavidin. We have conjugated bR with biotin-PEG3400 through amine-based coupling to use it as a tether. The biotin-PEG-bR conjugate was further labeled with Texas Red to facilitate localization via fluorescence imaging. Confocal microscopy was utilized to analyze the microsphere surface at different stages of surface modification by employing fluorescent staining techniques. Sparely tethered supported lipid bilayer membranes were constructed successfully on streptavidin-functionalized silica particles (5 mum) using a detergent-based method in which tethered bR nucleates self-assembly of the bilayer membrane. The fluidity of the supported membranes was analyzed using fluorescence recovery after photobleaching in confocal imaging detection mode. The phospholipid diffusion coefficients obtained from these studies indicated that nativelike fluidity was achieved in the tether-supported membranes, thus providing a prospective microenvironment for insertion of membrane proteins of interest.  相似文献   

10.
In this study, the interaction between poly(styrene sulfonic acid), polyacrylic acid, poly(meth-acrylic acid), poly(L-glutamic acid), poly(vinyl sulfate), and ternary copolymer of styrene with maleic anhydride and methacrylic acid (3: 2: 1), as well as DNA with lipid vesicles composed of zwitterion (electroneutral) lipid phosphatidylcholine, has been investigated. The methods of centrifuge ultrafiltration and dynamic light scattering reveal that, at pH 4.2, all polyacids under study are effectively adsorbed on the phospholipid membrane. The polymer-membrane complex is stabilized by hydrogen bonds and hydrophobic interactions in addition to electrostatic bonds. Even though, to a greater or lesser extent, all polyacids are capable of undergoing adsorption on the membrane in a slightly acidic medium, their effect on the membrane permeability is substantially different and is correlated with the ability of a polymer to form multiple interactions with phospholipid molecules. Poly(acrylic acid), poly(methacrylic acid), poly(styrene sulfonic acid), and the ternary copolymer of styrene with maleic anhydride and methacrylic acid can produce the membrane pores that are permeable to low-molecular-mass compounds. At the same time, poly(L-glutamic acid), poly(vinyl sulfate), and DNA exert no effect on the membrane permeability, although they are sorbed on the membrane surface.  相似文献   

11.
Membrane-spanning phospholipid bolaamphiphiles either alone or as a constituent of a multicomponent lipid membrane may prove to be facile building blocks for generating robust bioactive membrane-mimetic assemblies. We have previously reported the synthesis of asymmetric dialkyl phospholipid bolaamphiphiles that contain ester linked phosphatidylcholine and amine functionalities at opposite chain ends. In this report, we describe the synthesis of phospholipid bolaamphiphiles that are conjugated to biotin via the terminal amine with or without a poly(ethylene oxide) spacer arm of varying chain length. The behavior of biotinylated bolaamphiphiles as a self-assembled monolayer at an air-water interface was characterized by epi-fluorescence microscopy and revealed that domain structure and pi-A isotherms were substantially influenced by linker type and size. Substrate bound assemblies were produced by Langmuir-Blodgett deposition onto planar substrates coated with an avidin derivatized polyelectrolyte multilayer. Significantly, external reflectance infrared spectroscopy confirmed the fabrication of bolaamphiphile thin films that display extended stability in vitro.  相似文献   

12.
One of the potential benefits of drug delivery systems in medicine is the creation of nanoparticle‐based vectors that deliver a therapeutic cargo in sufficient quantity to a target site to enable a selective effect, width of the therapeutic window depending on the toxicity of the vector and the cargo. In this work, we intended to improve the siRNA delivery efficiency of a new kind of nucleic acid carrier, which is the result of the conjugation of the membrane phospholipid 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) to the membrane‐active species Triton X‐100 (TX100). We hypothesized that by improving the biodegradability the cytotoxicity of the conjugate might by reduced, whereas its original transfection potential would be tentatively preserved. DOPC was conjugated to Triton X‐100 through spacers displaying various resistance to chemical hydrolysis and enzyme degradation. The results obtained through in vitro siRNA delivery experiments showed that the initial phosphoester bond can be replaced with a phospho(alkyl)enecarbonate group with no loss in the transfection activity, whereas the associated cytotoxicity was significantly decreased, as assessed by metabolic activity and membrane integrity measurements. The toxicity of the conjugates incorporating a phospho(alkyl)enesuccinnate moiety proved even lower but was clearly balanced with a reduction of the siRNA delivery efficiency. Hydrolytic stability and intracellular degradation of the conjugates were investigated by NMR spectroscopy and mass spectrometry. A general trend was that the more readily degraded conjugates were those with the lower toxicity. Otherwise, the phospho(alkyl)enecarbonate conjugates revealed some hemolytic activity, whereas the parent phosphoester did not. The reason why these conjugates behave differently with respect to hemolysis might be a consequence of unusual fusogenic properties and probably reflects the difference in the stability of the conjugates in the intracellular environment.  相似文献   

13.
利用基体辅助激光解吸电离飞行时间质谱法研究了商品化的生物素和异硫氰荧光素(FITC)标记和胰岛素的组成。其后利用基体辅助激光解吸电离飞行时间质谱法在位监控了生物素标记胰岛素的反应。结果发现:(1)商品化的标记胰岛素是一个多种标记比共存的混合物,而且两种商品化的标记胰岛素均包括了未标记的胰岛素;(2)标记物与蛋白质的摩尔比是决定标记物组成的重要因素,过高浓度标记物的使用有可能导致一些异常组份的生成。  相似文献   

14.
Conjugation of cytokine-neutralizing monoclonal antibodies (mAb) to hyaluronic acid (HA) having Mw of 1.6 MDa was previously shown to be an effective strategy for localized delivery to sites of inflammation. Despite the disparity in size of the mAb and HA, the mAb–HA conjugate was found bind tumor necrosis factor-α (TNFα) as strongly as the non-conjugated antibody, suggesting conjugation to this charged polysaccharide can provide an alternative to poly(ethylene glycol) (PEG) conjugation, which has been shown to reduce binding interactions for many proteins. To explore conjugation chemistries more systematically, we report a study on a model peptide inhibitor of tumor necrosis factor-α to investigate the effects of site-specific conjugation to HA and PEG. We compared the binding affinities of a variety of WP9QY peptide–polymer conjugates for TNFα in order to examine the effects of PEG molecular weight as well as the effects of PEG versus functionalized hyaluronic acid (HA) conjugation. The results indicate that the binding affinity of the PEG conjugates decreases in comparing PEG with mass 2 k, 10 k, and 30 k, which was attributed to PEG shrouding of the peptide, while conjugation to a 66 kDa HA chain preserved peptide binding affinity. We attribute this difference to the increased solubility of HA compared to PEG, potentially due to the carboxylic acid functional groups. In addition, the results demonstrate that conjugation to HA via a short PEG linker significantly enhances the association rate kon, which may reflect an increased peptide accessibility. By balancing both the advantages associated with the PEG conjugates and with the HA conjugates, the HA–PEG2k–WP9QY conjugate was able to improve the binding affinity of the peptide for TNFα by a factor of two. Optimization of polymer chemistry could be used to improve delivery of protein therapeutics for localized and systemic administration.  相似文献   

15.
Mixed self‐assembly of ligands 1 and 2 , PXDA ( 3 ), and Pd(NO3)2 afforded metal organic polyhedra ( MOP 1  –  MOP 3 ) which bear 24 covalently attached CB[7] and cyclooctyne moieties. Post assembly modification (PAM) of MOP 3 by covalent strain promoted alkyne azide click reaction provided MOP 4 R bearing covalently attached functionality (PEG, sulfonate, biotin, c‐RGD, fluorescein, and cyanine). Orthogonal CB[7]·guest mediated non‐covalent PAM of MOP 4 R with Ad‐ FITC afforded MOP 5 RGD • Ad‐ FITC and MOP 5 biotin • Ad‐ FITC . Flow cytometry analysis of the uptake of MOP 5 RGD • Ad‐ FITC toward U87 cells demonstrated improved uptake relative to control MOP lacking c‐RGD ligands. These results suggest a broad applicability of orthogonally functionalizable (covalent and non‐covalent) MOPs in targeted drug delivery and imaging applications.  相似文献   

16.
A key advantage of amino-modified SiO2 nanoparticles for delivery of phosphorylated nucleosides is a broad possibility for functionalization. It can be modified with ligands currently investigated in targeted drug delivery. To improve the efficacy for intracellular delivery, SiO2 nanoparticles were functionalized with tumor-targeting ligands folic acid, biotin or 5-fluorouracil. Studies of accumulation of these conjugates in HCT116 colon carcinoma cells revealed that the uptake of modified conjugates was significantly bigger compared to unmodified nanoparticles, with the biotinylated conjugate as the preferred compound. The nanocomposites of biotin modified SiO2 and 2′,3′-dideoxyuridine triphosphate showed a pronounced antiproliferative potency relative to the unmodified nanocomposites. Thus, multi-functionalization of SiO2 nanoparticle based conjugates has a major potential for delivery of nucleoside triphosphate analogues, therefore tentatively enhancing their bioactivity.  相似文献   

17.
Oligodeoxyribonucleotides were synthesized that contain a novel nucleoside, 2′-O-(2,3-dihydroxypropyl)cytidine. Its 2′-diol group was blocked by an allyloxycarbonyl protecting group. Selective deprotection of diol group(s) of the support-immobilized blocked oligodeoxyribonucleotide by Pd(0) followed by periodate oxidation resulted in generation of the 2′-aldehyde group(s) on solid-phase. The modified oligonucleotides were used to prepare a number of conjugates with acridine, biotin and N-modified laminin peptides by oxime, hydrazone and hydrazine formation. The method may be applicable to the synthesis of oligonucleotide-peptide conjugates.  相似文献   

18.
《Supramolecular Science》1997,4(3-4):207-214
The miscibilities of phosphatidylcholine, retinal and saturated fatty acid derivatives in surface phases at the air/water interface are investigated on the basis of the thermodynamic two-dimensional phase rule. The latter is applied to the ‘collapse’ pressure and the equilibrium surface pressure characteristics of binary lipid monolayers or spread amphiphilic mixtures, respectively. The equilibrium surface pressures (ESPs), at which insoluble lipid monolayers are in equilibrium with three-dimensional lipid phases, are determined by spreading of single-component or binary solutions of lipids in organic solvent up to supersaturation at the air/water interface. The kinetics of establishment of steady surface pressure values at supersaturation is followed depending on the nature of the lipid samples. ESPs and ‘collapse’ pressures of mixtures of dilaur-oylphosphatidylcholine (DLPC), all-trans retinal (t-R) and lauric acid (LA) are studied at various lipid molar ratios. The compositional phase diagrams of the ESPs and ‘collapse’ pressures, obtained at a constant temperature, indicate that the interfacial miscibilities of both DLPC and t-R and DLPC and LA are non-ideal. Owing to its ‘bulky’ molecular structure and the tendency towards self-aggregation, dominated by intermolecular π-π interactions, the t-R component could be accommodated in the hydrophobic portion of the phospholipid membrane at mole fractions less than 0.5. The accommodation of the other neutral, rod-like fatty acid component in the DLPC matrix is probably favoured by the formation of intermolecular hydrogen bonding. Phase separation between DLPC and LA is evident from the thermodynamic results at high LA mole fractions (> 0.75) in the surface mixtures.  相似文献   

19.
《Analytical letters》2012,45(12):2157-2169
Abstract

We have developed a rapid and simple protocol for the development of sandwich enzyme immunoassays utilizing a modified microwell plate carrying biotin on its surface, Aviplate-Biotin. A single polyclonal antibody is conjugated with either a reporter enzyme or with biotin. These conjugates are mixed with antigen to form a ternary complex containing both enzyme and biotin tagged antibodies; this complex is then specifically captured by Aviplate-Biotin that has been treated with avidin. Once optimized the assay can be completed in slightly over 2 hours using conventional enzyme immunoassay instrumentation.  相似文献   

20.
Dipalmitoylphosphatidylcholine (DPPC) liposomes were employed as membrane models for the investigation of the interaction occurring between methotrexate (MTX) and bilayer lipid matrix. Liposomes were obtained by hydrating a lipid film with 50 mM Tris buffer (pH 7.4). The differential scanning calorimetry (DSC) evaluation of the thermotropic parameters associated with the phase transitions of DPPC liposomes gave useful information about the kind of drug-membrane interaction. The results showed an electrostatic interaction taking place with the negatively charged molecules of MTX and the phosphorylcholine head groups, constituting the outer part of DPPC bilayers. No interaction with the hydrophobic phospholipid bilayer domains was detected, revealing a poor capability of MTX to cross through lipid membranes to reach the interior compartment of a lipid bounded structure. These findings correlate well within vitro biological experiments on MTX cell susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号